REVIEWS

A survey of active quasi-circulators

Bingjun Tang and Li Geng

+ Author Affiliations

 Corresponding author: Li Geng, Email: gengli@xjtu.edu.cn

PDF

Turn off MathJax

Abstract: With the development of multi-band wireless communication and the increasing data transmission rate, the circulator as an antenna interface must be able to work in multiple frequency bands and provides large bandwidth. It presents a high challenge to the design of circulators, especially the active quasi-circulators. In this survey, we review the representative active quasi-circulators and summarize three different techniques and the corresponding structures to show an incremental improvement of the isolation and bandwidth of the active quasi-circulators. In addition, we also compare the performance of several state-of-art active circulators, and analyze their advantages and disadvantages. Finally, we conclude the future trend of the active quasi-circulators.

Key words: active quasi-circulatormultibandbandwidthisolationlinearityinsertion loss



[1]
Fathy A, Denlinger E, Kalokitis D, et al. Miniature circulators for microwave superconducting systems. Proceedings of 1995 IEEE MTT-S International Microwave Symposium, 1995, 195
[2]
Yung E K N, Chen R S, Wu K, et al. Analysis and development of millimeter-wave waveguide-junction circulator with a ferrite sphere. IEEE Trans Microw Theory Tech, 1998, 46, 1721 doi: 10.1109/22.734570
[3]
Borjak A M, Davis L E. More compact ferrite circulator junctions with predicted performance. IEEE Trans Microw Theory Tech, 1992, 40, 2352 doi: 10.1109/22.179901
[4]
Mung S W Y, Chan W S. The challenge of active circulators: Design and optimization in future wireless communication. IEEE Microw Mag, 2019, 20, 55 doi: 10.1109/MMM.2019.2909518
[5]
Hara S, Tokumitsu T, Aikawa M. Novel unilateral circuits for MMIC circulators. IEEE Trans Microw Theory Tech, 1990, 38, 1399 doi: 10.1109/22.58677
[6]
Shin S C, Huang J Y, Lin K Y, et al. A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett, 2008, 18, 797 doi: 10.1109/LMWC.2008.2007703
[7]
Wu H S, Wang C W, Tzuang C K C. CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans Microw Theory Tech, 2010, 58, 2084 doi: 10.1109/TMTT.2010.2052405
[8]
Chang C H, Lo Y T, Kiang J F. A 30 GHz active quasi-circulator with current-reuse technique in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett, 2010, 20, 693 doi: 10.1109/LMWC.2010.2079321
[9]
Mung S W Y, Chan W S. Novel active quasi-circulator with phase compensation technique. IEEE Microw Wirel Compon Lett, 2008, 18, 800 doi: 10.1109/LMWC.2008.2007704
[10]
Gasmi A, Huyart B, Bergeault E, et al. Noise and power optimization of a MMIC quasi-circulator. IEEE Trans Microw Theory Tech, 1997, 45, 1572 doi: 10.1109/22.622924
[11]
Zheng Y, Saavedra C E. Active quasi-circulator MMIC using OTAs. IEEE Microw Wirel Compon Lett, 2009, 19, 218 doi: 10.1109/LMWC.2009.2015500
[12]
Kalialakis C, Cryan M J, Hall P S, et al. Analysis and design of integrated active circulator antennas. IEEE Trans Microw Theory Tech, 2000, 48, 1017 doi: 10.1109/22.904739
[13]
Palomba M, Bentini A, Palombini D, et al. A novel hybrid active quasi-circulator for L-band applications. 2012 19th International Conference on Microwaves, Radar & Wireless Communications, 2012, 41
[14]
Huang D J, Kuo J L, Wang H E. A 24-GHz low power and high isolation active quasi-circulator. 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, 1
[15]
Hung S H, Lee Y C, Su C C, et al. High-isolation millimeter-wave subharmonic monolithic mixer with modified quasi-circulator. IEEE Trans Microw Theory Tech, 2013, 61, 1140 doi: 10.1109/TMTT.2013.2244229
[16]
Wang S, Lee C H, Wu Y B. Fully integrated 10-GHz active circulator and quasi-circulator using bridged-T networks in standard CMOS. IEEE Trans VLSI Syst, 2016, 24, 3184 doi: 10.1109/TVLSI.2016.2535377
[17]
Ghosh D, Kumar G. A broadband active quasi circulator for UHF and L band applications. IEEE Microw Wirel Compon Lett, 2016, 26, 601 doi: 10.1109/LMWC.2016.2587830
[18]
Mung S W Y, Chan W S. Self-equalization technique for distributed quasi-circulator. Microw Opt Technol Lett, 2009, 51, 182 doi: 10.1002/mop.23949
[19]
Hung S H, Cheng K W, Wang Y H. An ultra wideband quasi-circulator with distributed amplifiers using 90 nm CMOS technology. IEEE Microw Wirel Compon Lett, 2013, 23, 656 doi: 10.1109/LMWC.2013.2283864
[20]
Hsieh J Y, Wang T, Lu S S. A 1.5-mW, 2.4 GHz quasi-circulator with high transmitter-to-receiver isolation in CMOS technology. IEEE Microw Wirel Compon Lett, 2014, 24, 872 doi: 10.1109/LMWC.2014.2357759
[21]
Tang B J, Xu J T, Geng L. Integrated active quasi-circulator with 27 dB isolation and 0.8–6.8GHz wideband by using feedback technique. 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018, 1
[22]
Fang K, Buckwalter J F. A tunable 5–7 GHz distributed active quasi-circulator with 18-dBm output power in CMOS SOI. IEEE Microw Wirel Compon Lett, 2017, 27, 998 doi: 10.1109/LMWC.2017.2750116
[23]
Mung S W Y, Chan W S. Wideband active quasi-circulator with tunable isolation enhancement. J Eng, 2014, 2014, 83 doi: 10.1049/joe.2013.0136
[24]
Tang B J, Gui X Y, Xu J T, et al. A dual interference-canceling active quasi-circulator achieving 36-dB isolation over 6-GHz bandwidth. IEEE Microw Wirel Compon Lett, 2019, 29, 409 doi: 10.1109/LMWC.2019.2910993
[25]
Tang B J, Gui X Y, Xu J T, et al. A wideband active quasi-circulator with 34-dB isolation and insertion loss of 2.5 dB. IEEE Microw Wirel Compon Lett, 2020, 30, 693 doi: 10.1109/LMWC.2020.2994338
[26]
Zhou J, Reiskarimian N, Krishnaswamy H. Receiver with integrated magnetic-free N-path-filter-based non-reciprocal circulator and baseband self-interference cancellation for full-duplex wireless. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 178
[27]
Reiskarimian N, Zhou J, Krishnaswamy H. A CMOS passive LPTV nonmagnetic circulator and its application in a full-duplex receiver. IEEE J Solid-State Circuits, 2017, 52, 1358 doi: 10.1109/JSSC.2017.2647924
[28]
Dinc T, Krishnaswamy H. 17.2 A 28 GHz magnetic-free non-reciprocal passive CMOS circulator based on spatio-temporal conductance modulation. 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, 294
[29]
Jain S, Agrawal A, Johnson M, et al. A 0.55-to-0.9 GHz 2.7 dB NF full-duplex hybrid-coupler circulator with 56 MHz 40 dB TX SI suppression. 2018 IEEE International Solid-State Circuits Conference - (ISSCC), 2018, 400
[30]
Nagulu A, Alù A, Krishnaswamy H. Fully-integrated non-magnetic 180nm SOI circulator with > 1W P1dB >+50dBm IIP3 and high isolation across 1.85 VSWR. 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, 104
[31]
Nagulu A, Krishnaswamy H. Non-magnetic 60GHz SOI CMOS circulator based on loss/dispersion-engineered switched bandpass filters. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 446
[32]
Zhou J, Chuang T H, Dinc T, et al. Receiver with > 20MHz bandwidth self-interference cancellation suitable for FDD, co-existence and full-duplex applications. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1
[33]
Reiskarimian N, Zhou J, Chuang T H, et al. Analysis and design of two-port N-path bandpass filters with embedded phase shifting. IEEE Trans Circuits Syst II, 2016, 63, 728 doi: 10.1109/TCSII.2016.2530338
[34]
van Liempd B, Hershberg B, Raczkowski K, et al. 2.2 A +70dBm IIP3 single-ended electrical-balance duplexer in 0.18 μm SOI CMOS. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1
[35]
Yang D, Yuksel H, Molnar A. A wideband highly integrated and widely tunable transceiver for in-band full-duplex communication. IEEE J Solid-State Circuits, 2015, 50, 1189 doi: 10.1109/JSSC.2015.2403362
[36]
Nagulu A, Chen T J, Zussman G, et al. Non-magnetic 0.18 μm SOI circulator with multi-watt power handling based on switched-capacitor clock boosting. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 444
[37]
He S, Akel N, Saavedra C E. Active quasi-circulator with high port-to-port isolation and small area. Electron Lett, 2012, 48, 848 doi: 10.1049/el.2012.0484
[38]
Huang D J, Kuo J L, Wang H E. A 24-GHz low power and high isolation active quasi-circulator. 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, 1
[39]
Kim S, Kim Y. Multi octave wideband CMOS circulator using 0.11 μm process. 2013 European Microwave Integrated Circuit Conference, 2013, 204
Fig. 1.  Diagrams showing the S-parameter matrix of (a) an ideal circulator and (b) a quasi-circulator.

Fig. 2.  (Color online) (a) Active quasi-circulator based on phase cancellation. (b) Core of conventional active quasi-circulator.

Fig. 3.  (Color online) (a) Active quasi-circulator with a tunable capacitor. (b) Isolation S31 varies with frequency. (c) Schematic of a tunable distributed active quasi-circulator.

Fig. 4.  (Color online) (a) Tunable active quasi-circulator with T-network phase shifters. (b) Schematic of the tunable active quasi-circulator by using DAs.

Fig. 5.  (Color online) (a) Active quasi-circulator with feedback technology. (b) Core circuit of feedback active quasi-circulator.

Fig. 6.  (Color online) (a) Active quasi-circulator with dual technology. (a) Architecture of conventional active quasi-circulator. (b) Schematic of dual interference-cancelling active circulator.

Fig. 7.  (Color online) Architecture of advanced dual interference-cancelling active circulator.

Fig. 8.  (Color online) (a) LPTV active quasi-circulator. (b) Three-port circulator with a 3λ/4 transmission-line ring.

Fig. 9.  Bandwidth and isolation behaviors of state of art active quasi-circulators.

Fig. 10.  Linearity behaviors of state of art active quasi-circulators.

Table 1.   Comparison with published active quasi-circulators.

ParameterMWCL 2010[8]ISSCC 2015[34]JSSC 2015[35]ISSCC 2016[26]ISSCC 2017[28]MWCL 2017[22]IWS 2018[21]MWCL 2019[24]MWCL 2020[25]
Technology180 nm CMOS180 nm CMOS65 nm CMOS65 nm CMOS45 nm CMOS SOI45 nm CMOS SOI180 nm CMOS180 nm CMOS180 nm CMOS
Frequency (GHz)29–311.9–2.20.1–1.50.6–0.822.7–27.75.3–7.30.8–6.81–71–8
Bandwidth (%)715175292032158150156
|S31| (dB)1250301518.530273634
|S21| (dB)4–63.7NA2.53.310.5 (gain)8–10108
|S32| (dB)7.2–7.93.902.53.259–1292.5
|S23| (dB)24NANANA5NA283016
|S12| (dB)22NANA2.5725201534
|S13| (dB)35NANANA8NA153033
|S11| (dB)6NA2051010368.5
|S22| (dB)5NANA5101051011
|S33| (dB)11.5NANANA14105118.5
Tx-ANT IIP3 (dBm)NA70NA27.519.9207.379.79
ANT-Rx IIP3 (dBm)NANANA8.720NA2.433.54.2
ANT-RX NF (dB)NANA5.54.33.3–4.4202016–209–10
Area (mm2)0.411.751.51.42.61.570.35640.56650.45
PDC (mW)15NA43–5630378.44.512.825.224.8
DownLoad: CSV
[1]
Fathy A, Denlinger E, Kalokitis D, et al. Miniature circulators for microwave superconducting systems. Proceedings of 1995 IEEE MTT-S International Microwave Symposium, 1995, 195
[2]
Yung E K N, Chen R S, Wu K, et al. Analysis and development of millimeter-wave waveguide-junction circulator with a ferrite sphere. IEEE Trans Microw Theory Tech, 1998, 46, 1721 doi: 10.1109/22.734570
[3]
Borjak A M, Davis L E. More compact ferrite circulator junctions with predicted performance. IEEE Trans Microw Theory Tech, 1992, 40, 2352 doi: 10.1109/22.179901
[4]
Mung S W Y, Chan W S. The challenge of active circulators: Design and optimization in future wireless communication. IEEE Microw Mag, 2019, 20, 55 doi: 10.1109/MMM.2019.2909518
[5]
Hara S, Tokumitsu T, Aikawa M. Novel unilateral circuits for MMIC circulators. IEEE Trans Microw Theory Tech, 1990, 38, 1399 doi: 10.1109/22.58677
[6]
Shin S C, Huang J Y, Lin K Y, et al. A 1.5–9.6 GHz monolithic active quasi-circulator in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett, 2008, 18, 797 doi: 10.1109/LMWC.2008.2007703
[7]
Wu H S, Wang C W, Tzuang C K C. CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans Microw Theory Tech, 2010, 58, 2084 doi: 10.1109/TMTT.2010.2052405
[8]
Chang C H, Lo Y T, Kiang J F. A 30 GHz active quasi-circulator with current-reuse technique in 0.18 μm CMOS technology. IEEE Microw Wirel Compon Lett, 2010, 20, 693 doi: 10.1109/LMWC.2010.2079321
[9]
Mung S W Y, Chan W S. Novel active quasi-circulator with phase compensation technique. IEEE Microw Wirel Compon Lett, 2008, 18, 800 doi: 10.1109/LMWC.2008.2007704
[10]
Gasmi A, Huyart B, Bergeault E, et al. Noise and power optimization of a MMIC quasi-circulator. IEEE Trans Microw Theory Tech, 1997, 45, 1572 doi: 10.1109/22.622924
[11]
Zheng Y, Saavedra C E. Active quasi-circulator MMIC using OTAs. IEEE Microw Wirel Compon Lett, 2009, 19, 218 doi: 10.1109/LMWC.2009.2015500
[12]
Kalialakis C, Cryan M J, Hall P S, et al. Analysis and design of integrated active circulator antennas. IEEE Trans Microw Theory Tech, 2000, 48, 1017 doi: 10.1109/22.904739
[13]
Palomba M, Bentini A, Palombini D, et al. A novel hybrid active quasi-circulator for L-band applications. 2012 19th International Conference on Microwaves, Radar & Wireless Communications, 2012, 41
[14]
Huang D J, Kuo J L, Wang H E. A 24-GHz low power and high isolation active quasi-circulator. 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, 1
[15]
Hung S H, Lee Y C, Su C C, et al. High-isolation millimeter-wave subharmonic monolithic mixer with modified quasi-circulator. IEEE Trans Microw Theory Tech, 2013, 61, 1140 doi: 10.1109/TMTT.2013.2244229
[16]
Wang S, Lee C H, Wu Y B. Fully integrated 10-GHz active circulator and quasi-circulator using bridged-T networks in standard CMOS. IEEE Trans VLSI Syst, 2016, 24, 3184 doi: 10.1109/TVLSI.2016.2535377
[17]
Ghosh D, Kumar G. A broadband active quasi circulator for UHF and L band applications. IEEE Microw Wirel Compon Lett, 2016, 26, 601 doi: 10.1109/LMWC.2016.2587830
[18]
Mung S W Y, Chan W S. Self-equalization technique for distributed quasi-circulator. Microw Opt Technol Lett, 2009, 51, 182 doi: 10.1002/mop.23949
[19]
Hung S H, Cheng K W, Wang Y H. An ultra wideband quasi-circulator with distributed amplifiers using 90 nm CMOS technology. IEEE Microw Wirel Compon Lett, 2013, 23, 656 doi: 10.1109/LMWC.2013.2283864
[20]
Hsieh J Y, Wang T, Lu S S. A 1.5-mW, 2.4 GHz quasi-circulator with high transmitter-to-receiver isolation in CMOS technology. IEEE Microw Wirel Compon Lett, 2014, 24, 872 doi: 10.1109/LMWC.2014.2357759
[21]
Tang B J, Xu J T, Geng L. Integrated active quasi-circulator with 27 dB isolation and 0.8–6.8GHz wideband by using feedback technique. 2018 IEEE MTT-S International Wireless Symposium (IWS), 2018, 1
[22]
Fang K, Buckwalter J F. A tunable 5–7 GHz distributed active quasi-circulator with 18-dBm output power in CMOS SOI. IEEE Microw Wirel Compon Lett, 2017, 27, 998 doi: 10.1109/LMWC.2017.2750116
[23]
Mung S W Y, Chan W S. Wideband active quasi-circulator with tunable isolation enhancement. J Eng, 2014, 2014, 83 doi: 10.1049/joe.2013.0136
[24]
Tang B J, Gui X Y, Xu J T, et al. A dual interference-canceling active quasi-circulator achieving 36-dB isolation over 6-GHz bandwidth. IEEE Microw Wirel Compon Lett, 2019, 29, 409 doi: 10.1109/LMWC.2019.2910993
[25]
Tang B J, Gui X Y, Xu J T, et al. A wideband active quasi-circulator with 34-dB isolation and insertion loss of 2.5 dB. IEEE Microw Wirel Compon Lett, 2020, 30, 693 doi: 10.1109/LMWC.2020.2994338
[26]
Zhou J, Reiskarimian N, Krishnaswamy H. Receiver with integrated magnetic-free N-path-filter-based non-reciprocal circulator and baseband self-interference cancellation for full-duplex wireless. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 178
[27]
Reiskarimian N, Zhou J, Krishnaswamy H. A CMOS passive LPTV nonmagnetic circulator and its application in a full-duplex receiver. IEEE J Solid-State Circuits, 2017, 52, 1358 doi: 10.1109/JSSC.2017.2647924
[28]
Dinc T, Krishnaswamy H. 17.2 A 28 GHz magnetic-free non-reciprocal passive CMOS circulator based on spatio-temporal conductance modulation. 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, 294
[29]
Jain S, Agrawal A, Johnson M, et al. A 0.55-to-0.9 GHz 2.7 dB NF full-duplex hybrid-coupler circulator with 56 MHz 40 dB TX SI suppression. 2018 IEEE International Solid-State Circuits Conference - (ISSCC), 2018, 400
[30]
Nagulu A, Alù A, Krishnaswamy H. Fully-integrated non-magnetic 180nm SOI circulator with > 1W P1dB >+50dBm IIP3 and high isolation across 1.85 VSWR. 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018, 104
[31]
Nagulu A, Krishnaswamy H. Non-magnetic 60GHz SOI CMOS circulator based on loss/dispersion-engineered switched bandpass filters. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 446
[32]
Zhou J, Chuang T H, Dinc T, et al. Receiver with > 20MHz bandwidth self-interference cancellation suitable for FDD, co-existence and full-duplex applications. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1
[33]
Reiskarimian N, Zhou J, Chuang T H, et al. Analysis and design of two-port N-path bandpass filters with embedded phase shifting. IEEE Trans Circuits Syst II, 2016, 63, 728 doi: 10.1109/TCSII.2016.2530338
[34]
van Liempd B, Hershberg B, Raczkowski K, et al. 2.2 A +70dBm IIP3 single-ended electrical-balance duplexer in 0.18 μm SOI CMOS. 2015 IEEE International Solid-State Circuits Conference (ISSCC), 2015, 1
[35]
Yang D, Yuksel H, Molnar A. A wideband highly integrated and widely tunable transceiver for in-band full-duplex communication. IEEE J Solid-State Circuits, 2015, 50, 1189 doi: 10.1109/JSSC.2015.2403362
[36]
Nagulu A, Chen T J, Zussman G, et al. Non-magnetic 0.18 μm SOI circulator with multi-watt power handling based on switched-capacitor clock boosting. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 444
[37]
He S, Akel N, Saavedra C E. Active quasi-circulator with high port-to-port isolation and small area. Electron Lett, 2012, 48, 848 doi: 10.1049/el.2012.0484
[38]
Huang D J, Kuo J L, Wang H E. A 24-GHz low power and high isolation active quasi-circulator. 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, 1
[39]
Kim S, Kim Y. Multi octave wideband CMOS circulator using 0.11 μm process. 2013 European Microwave Integrated Circuit Conference, 2013, 204
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4198 Times PDF downloads: 171 Times Cited by: 0 Times

    History

    Received: 19 July 2020 Revised: 11 September 2020 Online: Accepted Manuscript: 27 September 2020Uncorrected proof: 09 October 2020Published: 03 November 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bingjun Tang, Li Geng. A survey of active quasi-circulators[J]. Journal of Semiconductors, 2020, 41(11): 111406. doi: 10.1088/1674-4926/41/11/111406 B J Tang, L Geng, A survey of active quasi-circulators[J]. J. Semicond., 2020, 41(11): 111406. doi: 10.1088/1674-4926/41/11/111406.Export: BibTex EndNote
      Citation:
      Bingjun Tang, Li Geng. A survey of active quasi-circulators[J]. Journal of Semiconductors, 2020, 41(11): 111406. doi: 10.1088/1674-4926/41/11/111406

      B J Tang, L Geng, A survey of active quasi-circulators[J]. J. Semicond., 2020, 41(11): 111406. doi: 10.1088/1674-4926/41/11/111406.
      Export: BibTex EndNote

      A survey of active quasi-circulators

      doi: 10.1088/1674-4926/41/11/111406
      More Information
      • Corresponding author: Li Geng, Email: gengli@xjtu.edu.cn
      • Received Date: 2020-07-19
      • Revised Date: 2020-09-11
      • Published Date: 2020-11-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return