REVIEWS

A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability

Melissa Davis and Zhibin Yu

+ Author Affiliations

 Corresponding author: Zhibin Yu, zyu@fsu.edu

PDF

Turn off MathJax

Abstract: The perovskite material has many superb qualities which allow for its remarkable success as solar cells; flexibility is an emerging field for this technology. To encourage commercialization of flexible perovskite solar cells, two main areas are of focus: mitigation of stability issues and adaptation of production to flexible substrates. An in-depth report on stability concerns and solutions follows with a focus on Ruddlesden-Popper perovskites. Roll to roll processing of devices is desired to further reduce costs, so a review of flexible devices and their production methods follows as well. The final focus is on the sustainability of perovskite solar cell devices where recycling methods and holistic environmental impacts of devices are done.

Key words: materialthin filmdiode



[1]
Best research-cell efficiency chart. Photovoltaic Research. https://www.nrel.gov/pv/cell-efficiency.html
[2]
Park N G. Perovskite solar cells: an emerging photovoltaic technology. Mater Today, 2015, 18(2), 65 doi: 10.1016/j.mattod.2014.07.007
[3]
Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability. Adv Funct Mater, 2019, 0(0), 1808843 doi: 10.1002/adfm.201808843
[4]
AIST: research center for photovoltaic technologies - functional thin films team. https://unit.aist.go.jp/rcpv/cie/r_teams/eFTFT/index.html
[5]
Li C, Lu X, Ding W, et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B, 2008, 64(6), 702 doi: 10.1107/S0108768108032734
[6]
Castelli I E, García-Lastra J M, Thygesen K S, et al. Bandgap calculations and trends of organometal halide perovskites. APL Mater, 2014, 2(8), 081514 doi: 10.1063/1.4893495
[7]
Wang L, Yuan G D, Duan R F, et al. Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3– yXy) single crystals and photodetector applications. AIP Adv, 2016, 6(4), 045115 doi: 10.1063/1.4948312
[8]
De Wolf S, Holovsky J, Moon S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett, 2014, 5(6), 1035 doi: 10.1021/jz500279b
[9]
Ledinsky M, Schönfeldová T, Holovský J, et al. Temperature dependence of the urbach energy in lead iodide perovskites. J Phys Chem Lett, 2019, 10(6), 1368 doi: 10.1021/acs.jpclett.9b00138
[10]
Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156), 344 doi: 10.1126/science.1243167
[11]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156), 341 doi: 10.1126/science.1243982
[12]
Peng J, Chen Y, Zheng K, et al. Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chem Soc Rev, 2017, 46(19), 5714 doi: 10.1039/C6CS00942E
[13]
Snaith H J, Abate A, Ball J M, et al. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett, 2014, 5(9), 1511 doi: 10.1021/jz500113x
[14]
Shao Y, Xiao Z, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun, 2014, 5, 5784 doi: 10.1038/ncomms6784
[15]
Elumalai N K, Mahmud M A, Wang D, et al. Perovskite solar cells: progress and advancements. Energies, 2016, 9(11), 861 doi: 10.3390/en9110861
[16]
Kang D H, Park N G. On the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Adv Mater, 2019, 0(0), 1805214 doi: 10.1002/adma.201805214
[17]
Kim H S, Jang I H, Ahn N, et al. Control of IV hysteresis in CH3NH3-PbI3 perovskite solar cell. J Phys Chem Lett, 2015, 6(22), 4633 doi: 10.1021/acs.jpclett.5b02273
[18]
Fakharuddin A, Shabbir U, Qiu W, et al. Inorganic and layered perovskites for optoelectronic devices. Adv Mater, 2019, 0(0), 1807095 doi: 10.1002/adma.201807095
[19]
Son D Y, Kim S G, Seo J Y, et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J Am Chem Soc, 2018, 140(4), 1358 doi: 10.1021/jacs.7b10430
[20]
Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408), eaat8235 doi: 10.1126/science.aat8235
[21]
Boyd C C, Cheacharoen R, Leijtens T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 2019, 119, 3418 doi: 10.1021/acs.chemrev.8b00336
[22]
Ma C, Leng C, Ji Y, et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale, 2016, 8(43), 18309 doi: 10.1039/C6NR04741F
[23]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13(4), 1764 doi: 10.1021/nl400349b
[24]
Tai Q, You P, Sang H, et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat Commun, 2016, 7, 11105 doi: 10.1038/ncomms11105
[25]
Jiang Q, Rebollar D, Gong J, et al. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew Chem, 2015, 127(26), 7727 doi: 10.1002/ange.201503038
[26]
Domanski K, Alharbi E A, Hagfeldt A, et al. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat Energy, 2018, 3(1), 61 doi: 10.1038/s41560-017-0060-5
[27]
Bryant D, Aristidou N, Pont S, et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ Sci, 2016, 9(5), 1655 doi: 10.1039/C6EE00409A
[28]
Kim G Y, Senocrate A, Yang T Y, et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat Mater, 2018, 17(5), 445 doi: 10.1038/s41563-018-0038-0
[29]
Saidaminov M I, Kim J, Jain A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat Energy, 2018, 3(8), 648 doi: 10.1038/s41560-018-0192-2
[30]
Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol, 2015, 10(5), 391 doi: 10.1038/nnano.2015.90
[31]
Ouafi M, Jaber B, Atourki L, et al. Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. J Alloys Compd, 2018, 746, 391 doi: 10.1016/j.jallcom.2018.02.240
[32]
Li F, Liu M. Recent efficient strategies for improving the moisture stability of perovskite solar cells. J Mater Chem, A, 2017, 5(30), 15447 doi: 10.1039/C7TA01325F
[33]
Han Y, Meyer S, Dkhissi Y, et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem, A, 2015, 3(15), 8139 doi: 10.1039/C5TA00358J
[34]
Cao D H, Stoumpos C C, Yokoyama T, et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3) n-1Sn nI3 n+1 perovskites. ACS Energy Lett, 2017, 2(5), 982 doi: 10.1021/acsenergylett.7b00202
[35]
Chen P, Bai Y, Wang S, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv Funct Mater, 2018, 28(17), 1706923 doi: 10.1002/adfm.201706923
[36]
Gao L, Zhang F, Xiao C, et al. Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells. Adv Funct Mater, 2019, 0(0), 1901652 doi: 10.1002/adfm.201901652
[37]
Cao D H, Stoumpos C C, Farha O K, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc, 2015, 137(24), 7843 doi: 10.1021/jacs.5b03796
[38]
Ortiz-Cervantes C, Carmona-Monroy P, Solis-Ibarra D. Two-dimensional halide perovskites in solar cells: 2D or not 2D. ChemSusChem, 2019, 12(8), 1560 doi: 10.1002/cssc.201802992
[39]
Smith I C, Hoke E T, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 2014, 126(42), 11414 doi: 10.1002/ange.201406466
[40]
Hu H, Salim T, Chen B, et al. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci Rep, 2016, 6, 33546 doi: 10.1038/srep33546
[41]
Stoumpos C C, Soe C M M, Tsai H, et al. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem, 2017, 2(3), 427 doi: 10.1016/j.chempr.2017.02.004
[42]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32(3), 510 doi: 10.1063/1.1736034
[43]
Blancon J C, Tsai H, Nie W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, eaal4211 doi: 10.1126/science.aal4211
[44]
Chao L, Niu T, Xia Y, et al. Efficient and stable low-dimensional Ruddlesden–Popper perovskite solar cells enabled by reducing tunnel barrier. J Phys Chem Lett, 2019, 10(6), 1173 doi: 10.1021/acs.jpclett.9b00276
[45]
Chen Y, Sun Y, Peng J, et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv Mater, 2018, 30(2), 1703487 doi: 10.1002/adma.201703487
[46]
Yan J, Qiu W, Wu G, et al. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J Mater Chem A, 2018, 6(24), 11063 doi: 10.1039/C8TA02288G
[47]
Li H, Wang X, Zhang T, et al. Layered Ruddlesden–Popper efficient perovskite solar cells with controlled quantum and dielectric confinement introduced via doping. Adv Funct Mater, 2019, 29(30), 1903293 doi: 10.1002/adfm.201903293
[48]
Shi J, Gao Y, Gao X, et al. Fluorinated low-dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv Mater, 2019, 31(37), 1901673 doi: 10.1002/adma.201901673
[49]
Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536(7616), 312 doi: 10.1038/nature18306
[50]
Zhang X, Ren X, Liu B, et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ Sci, 2017, 10(10), 2095 doi: 10.1039/C7EE01145H
[51]
Zhang S, Hosseini S M, Gunder R, et al. The role of bulk and interface recombination in high-efficiency low-dimensional perovskite solar cells. Adv Mater, 2019, 31(30), 1901090 doi: 10.1002/adma.201901090
[52]
Yang R, Li R, Cao Y, et al. Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv Mater, 2018, 30(51), 1804771 doi: 10.1002/adma.201804771
[53]
Lunardi M M, Ho-Baillie A W Y, Alvarez-Gaitan J P, et al. A life cycle assessment of perovskite/silicon tandem solar cells. Prog Photovolt Res Appl, 2017, 25(8), 679 doi: 10.1002/pip.2877
[54]
Gong J, Darling S B, You F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ Sci, 2015, 8(7), 1953 doi: 10.1039/C5EE00615E
[55]
Dong H, Xi J, Zuo L, et al. Conjugated molecules “bridge”: functional ligand toward highly efficient and long-term stable perovskite solar cell. Adv Funct Mater, 2019, 29(17), 1808119 doi: 10.1002/adfm.201808119
[56]
Yang D, Yang R, Priya S, et al. Recent advances in flexible perovskite solar cells: fabrication and applications. Angew Chem Int Ed, 2019, 58(14), 4466 doi: 10.1002/anie.201809781
[57]
Lam J Y, Chen J Y, Tsai P C, et al. A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Adv, 2017, 7(86), 54361 doi: 10.1039/C7RA10321B
[58]
Binek A, Petrus M L, Huber N, et al. Recycling perovskite solar cells to avoid lead waste. ACS Appl Mater Interfaces, 2016, 8(20), 12881 doi: 10.1021/acsami.6b03767
[59]
Razza S, Castro-Hermosa S, Di Carlo A, et al. Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater, 2016, 4 doi: 10.1063/1.4962478
[60]
Bashir A, Shukla S, Haur Lew, J, et al. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale, 2018, 10(5), 2341 doi: 10.1039/C7NR08289D
[61]
Cao K, Zuo Z, Cui J, et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17, 171 doi: 10.1016/j.nanoen.2015.08.009
[62]
Li P, Liang C, Bao B, et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy, 2018, 46, 203 doi: 10.1016/j.nanoen.2018.01.049
[63]
Wei Z, Chen H, Yan K, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed, 2014, 53(48), 13239 doi: 10.1002/anie.201408638
[64]
Liu X, Guo X, Lv Y, et al. Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes. ACS Appl Mater Interfaces, 2018, 10(21), 18141 doi: 10.1021/acsami.8b03557
[65]
Zardetto V, Brown T M, Reale A, et al. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B, 2011, 49(9), 638 doi: 10.1002/polb.22227
[66]
Xie H, Yin X, Guo Y, et al. Recent progress of flexible perovskite solar cells. Phys Status Solidi RRL, 2019, 13(5), 1800566 doi: 10.1002/pssr.201800566
[67]
Han G S, Lee S, Duff M L, et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates. ACS Appl Mater Interfaces, 2018, 10(5), 4697 doi: 10.1021/acsami.7b16499
[68]
Burst J M, Rance W L, Meysing D M, et al. Performance of transparent conductors on flexible glass and plastic substrates for thin film photovoltaics. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014, 1589
[69]
Zhu N, Qi X, Zhang Y, et al. High efficiency (18.53%) of flexible perovskite solar cells via the insertion of potassium chloride between SnO2 and CH3NH3PbI3 layers. ACS Appl. Energy Mater, 2019, 2(5), 3676 doi: 10.1021/acsaem.9b00391
[70]
Wu C, Wang D, Zhang Y, et al. FAPbI3 flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process. Adv Funct Mater, 2019, 29(34), 1902974 doi: 10.1002/adfm.201902974
[71]
Park J I, Heo J H, Park S H, et al. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J Power Sources, 2017, 341, 340 doi: 10.1016/j.jpowsour.2016.12.026
[72]
Tavakoli M M, Tsui K H, Zhang Q, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 2015, 9(10), 10287 doi: 10.1021/acsnano.5b04284
[73]
Dou B, Miller E M, Christians J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. J Phys Chem Lett, 2017, 8(19), 4960 doi: 10.1021/acs.jpclett.7b02128
[74]
Kim H I, Kim MJ, Choi K, et al. Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer. Adv Energy Mater, 2018, 8(16), 1702872 doi: 10.1002/aenm.201702872
[75]
Luo Q, Ma H, Hou Q, et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater, 2018, 28(11), 1706777 doi: 10.1002/adfm.201706777
[76]
Gao L, Chen L, Huang S, et al. Flexible and highly durable perovskite solar cells with a sandwiched device structure. ACS Appl Mater Interfaces, 2019, 11(19), 17475 doi: 10.1021/acsami.9b04373
[77]
Guerrero A, You J, Aranda, C, et al. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 2016, 10(1), 218 doi: 10.1021/acsnano.5b03687
[78]
Lee E, Ahn J, Kwon H C, et al. All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater, 2018, 8(9), 1702182 doi: 10.1002/aenm.201702182
[79]
Kang S, Jeong J, Cho S, et al. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. J Mater Chem A, 2019, 7(3), 1107 doi: 10.1039/C8TA10585E
[80]
Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci, 2017, 10(1), 337 doi: 10.1039/C6EE02650H
[81]
Bi C, Chen B, Wei H, et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv Mater, 2017, 29(30), 1605900 doi: 10.1002/adma.201605900
[82]
Zhao Q, Wu R, Zhang Z, et al. Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer. Org Electron, 2019, 71, 106 doi: 10.1016/j.orgel.2019.05.019
[83]
Schmidt T M, Larsen-Olsen T T, Carlé J E, et al. Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv Energy Mater, 2015, 5(15), 1500569 doi: 10.1002/aenm.201500569
[84]
Hwang K, Jung Y S, Heo Y J, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater, 2015, 27(7), 1241 doi: 10.1002/adma.201404598
[85]
Zuo C, Vak D, Angmo D, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185 doi: 10.1016/j.nanoen.2018.01.037
[86]
Galagan Y, Di Giacomo F, Gorter H, et al. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv Energy Mater, 2018, 8(32), 1801935 doi: 10.1002/aenm.201801935
[87]
Hao F, Stoumpos C C, Cao D H, et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics, 2014, 8(6), 489 doi: 10.1038/nphoton.2014.82
[88]
Giustino F, Snaith H J. Toward lead-free perovskite solar cells. ACS Energy Lett, 2016, 1(6), 1233 doi: 10.1021/acsenergylett.6b00499
[89]
Babayigit A, Duy Thanh D, Ethirajan A, et al. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio Rerio. Sci Rep, 2016, 6, 18721 doi: 10.1038/srep18721
[90]
Wu C, Zhang Q, Liu Y, et al. The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv Sci, 2018, 5(3), 1700759 doi: 10.1002/advs.201700759
[91]
Gao W, Ran C, Xi J, et al. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2 % efficiency. ChemPhysChem, 2018, 19(14), 1696 doi: 10.1002/cphc.201800346
[92]
Commission for Environmental Cooperation. Environmentally sound management of spent lead-acid batteries in north america. 2016
[93]
Chen P Y, Qi J, Klug M T, et al. Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries. Energy Environ Sci, 2014, 7(11), 3659 doi: 10.1039/C4EE00965G
[94]
Kim B J, Kim D H, Kwon S L, et al. Selective dissolution of halide perovskites as a step towards recycling solar cells. Nat Commun, 2016, 7, 11735 doi: 10.1038/ncomms11735
[95]
Mahalingam S, Raimi-Abraham B T, Craig D Q M, et al. Solubility–spinnability map and model for the preparation of fibres of polyethylene (terephthalate) using gyration and pressure. Chem Eng J, 2015, 280, 344 doi: 10.1016/j.cej.2015.05.114
[96]
Eco-Indicator – an overview. ScienceDirect Topics. https://www.sciencedirect.com/topics/engineering/eco-indicator
Fig. 1.  (Color online) Crystal structure diagram for the perovskite material[4].

Fig. 2.  (Color online) Absorption coefficients over photon energy for perovskite, GaAs, and single crystal silicon[8].

Fig. 3.  (Color online) Current–voltage performance of a PSC with (a) hysteresis properties and (b) no hysteresis properties. (c) Schematic diagram denoting potential causes of hysteresis in a PSC[15].

Fig. 4.  (Color online) Time lapse of perovskite film degradation due to humidity[22].

Fig. 5.  (Color online) Stability depicted by change in absorption of perovskite films for two days in (a) illuminated, nitrogen atmosphere, (b) dark, nitrogen atmosphere, (c) illuminated, ambient atmosphere[27].

Fig. 6.  (Color online) Effect of UV light stability due to percentage of bromide included in PSC[31].

Fig. 7.  (Color online) Encapsulation methods for PSCs (a) with a full covering of epoxy and (b) with a ‘u’-shaped glass cover and a desiccant[33].

Fig. 8.  (Color online) Three common examples of 2D perovskites as the active layer of PSCs[38].

Fig. 9.  (Color online) Crystal Structures of Ruddlesden-Popper and Dion-Jacobson perovskites[38].

Fig. 10.  (Color online) Crystal structure for Ruddlesden-Popper perovskites with increasing ‘n’ values[40].

Fig. 11.  (Color online) Growth orientations of Ruddlesden-Popper perovskites: horizontal and vertical[38].

Fig. 12.  (Color online) Solvent effect on growth direction for pure DMF, equal parts DMF and DMSO, and pure DMSO[36].

Fig. 13.  (Color online) Normalized efficiency of BA RPPSCs over time with (a) constant illumination while unencapsulated, (b) unencapsulated in humidity, (c) constant illumination while encapsulated, and (d) encapsulated in humidity[49].

Fig. 14.  (Color online) Energy payback times per photovoltaic material where P-1 and P-2 are two PSCs with different layers[54].

Fig. 15.  (Color online) (a) Sequential processing of R2R production for all steps. (b) Slot die printing apparatus. (c) Resulting fPSC device. (d) Razza et al.’s R2R processing apparatus[59].

Fig. 16.  (Color online) fPSC device structure of Han et al. on titanium film[67].

Fig. 17.  (Color online) (a) Schematic view of PEN sandwich set-up for (a1) single PEN, (a2) double PEN with 125 μm offset, and (a3) double PEN with neutral position. (b–d) SEM images of PEN devices post flexing with a higher magnification on apparent cracks. The images correspond with the schematic set-up as follows: (b) is (a1), (c) is (a2), and (d) is (a3)[76].

Fig. 18.  SEM Images of (a) ITO on PET with ITO flexed outward and inward, (b) ITO on CPI with ITO flexed outward and inward[71].

Fig. 19.  (Color online) Perovskite film deposition method by Wu et al. with spin-coating, low pressure solvent removal, and thermal annealing[70].

Fig. 20.  Device structure of inverted fPSC with an efficiency of 18.1% ITO/PET/perovskite/fullerene/BCP/Copper[81].

Fig. 21.  (Color online) (a1) Cell structure with energy band levels. (a2) Slot die set-up with gas quenching attachment. (b) Roll to Roll manufacturing set-up seen in stages (b1) PbI2 deposited (b2) PbI2 layer annealed with gas quenching (b3) resulting film after MAI[84].

Fig. 22.  (Color online) (a) Perovskite deposition method by Zuo et al. where solution is deposited onto a heated substrate and quenched with nitrogen gas then heated with a second hot plate. (b) Photographs of resulting rolls[85].

Fig. 23.  (Color online) Conversion of 1 lead-acid battery into 709 m2 PSCs and power for 30.2 homes in Las Vegas[93].

Fig. 24.  (Color online) Refining processes for PbI2 in perovskite solar cells when harvest from raw lead ore or car batteries[93].

Fig. 25.  (Color online) Two-step process of Kim et al. to extract lead from solvents[94].

Fig. 26.  (Color online) Environmental Profile of FTO/TiO2/perovskite/spiro/Au focus should be given to the factors highlighted with a red box[54].

Fig. 27.  (Color online) Environmental profile of ITO/ZnO/perovskite/Ag[54].

Fig. 28.  (Color online) Holistic impact of various PV materials on resources, human health, and ecosystem quality P-1 is FTO/ TiO2/perovskite/spiro/Au P-2 is ITO/ZnO/perovskite/Ag[54].

Table 1.   Summary of flexible substrates with their maximum working temperature, cost, and record efficiency.

MaterialWorking
temperature (°C)
CostRecord
efficiency (%)
PET120Low18.53
PEN155Low19.38
CPI300Low15.5
Flexible/ willow glass700High18.1
DownLoad: CSV
[1]
Best research-cell efficiency chart. Photovoltaic Research. https://www.nrel.gov/pv/cell-efficiency.html
[2]
Park N G. Perovskite solar cells: an emerging photovoltaic technology. Mater Today, 2015, 18(2), 65 doi: 10.1016/j.mattod.2014.07.007
[3]
Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability. Adv Funct Mater, 2019, 0(0), 1808843 doi: 10.1002/adfm.201808843
[4]
AIST: research center for photovoltaic technologies - functional thin films team. https://unit.aist.go.jp/rcpv/cie/r_teams/eFTFT/index.html
[5]
Li C, Lu X, Ding W, et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr B, 2008, 64(6), 702 doi: 10.1107/S0108768108032734
[6]
Castelli I E, García-Lastra J M, Thygesen K S, et al. Bandgap calculations and trends of organometal halide perovskites. APL Mater, 2014, 2(8), 081514 doi: 10.1063/1.4893495
[7]
Wang L, Yuan G D, Duan R F, et al. Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3– yXy) single crystals and photodetector applications. AIP Adv, 2016, 6(4), 045115 doi: 10.1063/1.4948312
[8]
De Wolf S, Holovsky J, Moon S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett, 2014, 5(6), 1035 doi: 10.1021/jz500279b
[9]
Ledinsky M, Schönfeldová T, Holovský J, et al. Temperature dependence of the urbach energy in lead iodide perovskites. J Phys Chem Lett, 2019, 10(6), 1368 doi: 10.1021/acs.jpclett.9b00138
[10]
Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156), 344 doi: 10.1126/science.1243167
[11]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156), 341 doi: 10.1126/science.1243982
[12]
Peng J, Chen Y, Zheng K, et al. Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chem Soc Rev, 2017, 46(19), 5714 doi: 10.1039/C6CS00942E
[13]
Snaith H J, Abate A, Ball J M, et al. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett, 2014, 5(9), 1511 doi: 10.1021/jz500113x
[14]
Shao Y, Xiao Z, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun, 2014, 5, 5784 doi: 10.1038/ncomms6784
[15]
Elumalai N K, Mahmud M A, Wang D, et al. Perovskite solar cells: progress and advancements. Energies, 2016, 9(11), 861 doi: 10.3390/en9110861
[16]
Kang D H, Park N G. On the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Adv Mater, 2019, 0(0), 1805214 doi: 10.1002/adma.201805214
[17]
Kim H S, Jang I H, Ahn N, et al. Control of IV hysteresis in CH3NH3-PbI3 perovskite solar cell. J Phys Chem Lett, 2015, 6(22), 4633 doi: 10.1021/acs.jpclett.5b02273
[18]
Fakharuddin A, Shabbir U, Qiu W, et al. Inorganic and layered perovskites for optoelectronic devices. Adv Mater, 2019, 0(0), 1807095 doi: 10.1002/adma.201807095
[19]
Son D Y, Kim S G, Seo J Y, et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J Am Chem Soc, 2018, 140(4), 1358 doi: 10.1021/jacs.7b10430
[20]
Rong Y, Hu Y, Mei A, et al. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408), eaat8235 doi: 10.1126/science.aat8235
[21]
Boyd C C, Cheacharoen R, Leijtens T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 2019, 119, 3418 doi: 10.1021/acs.chemrev.8b00336
[22]
Ma C, Leng C, Ji Y, et al. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells. Nanoscale, 2016, 8(43), 18309 doi: 10.1039/C6NR04741F
[23]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13(4), 1764 doi: 10.1021/nl400349b
[24]
Tai Q, You P, Sang H, et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat Commun, 2016, 7, 11105 doi: 10.1038/ncomms11105
[25]
Jiang Q, Rebollar D, Gong J, et al. Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew Chem, 2015, 127(26), 7727 doi: 10.1002/ange.201503038
[26]
Domanski K, Alharbi E A, Hagfeldt A, et al. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat Energy, 2018, 3(1), 61 doi: 10.1038/s41560-017-0060-5
[27]
Bryant D, Aristidou N, Pont S, et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ Sci, 2016, 9(5), 1655 doi: 10.1039/C6EE00409A
[28]
Kim G Y, Senocrate A, Yang T Y, et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat Mater, 2018, 17(5), 445 doi: 10.1038/s41563-018-0038-0
[29]
Saidaminov M I, Kim J, Jain A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat Energy, 2018, 3(8), 648 doi: 10.1038/s41560-018-0192-2
[30]
Stranks S D, Snaith H J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol, 2015, 10(5), 391 doi: 10.1038/nnano.2015.90
[31]
Ouafi M, Jaber B, Atourki L, et al. Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. J Alloys Compd, 2018, 746, 391 doi: 10.1016/j.jallcom.2018.02.240
[32]
Li F, Liu M. Recent efficient strategies for improving the moisture stability of perovskite solar cells. J Mater Chem, A, 2017, 5(30), 15447 doi: 10.1039/C7TA01325F
[33]
Han Y, Meyer S, Dkhissi Y, et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem, A, 2015, 3(15), 8139 doi: 10.1039/C5TA00358J
[34]
Cao D H, Stoumpos C C, Yokoyama T, et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden–Popper (CH3(CH2)3NH3)2(CH3NH3) n-1Sn nI3 n+1 perovskites. ACS Energy Lett, 2017, 2(5), 982 doi: 10.1021/acsenergylett.7b00202
[35]
Chen P, Bai Y, Wang S, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv Funct Mater, 2018, 28(17), 1706923 doi: 10.1002/adfm.201706923
[36]
Gao L, Zhang F, Xiao C, et al. Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells. Adv Funct Mater, 2019, 0(0), 1901652 doi: 10.1002/adfm.201901652
[37]
Cao D H, Stoumpos C C, Farha O K, et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J Am Chem Soc, 2015, 137(24), 7843 doi: 10.1021/jacs.5b03796
[38]
Ortiz-Cervantes C, Carmona-Monroy P, Solis-Ibarra D. Two-dimensional halide perovskites in solar cells: 2D or not 2D. ChemSusChem, 2019, 12(8), 1560 doi: 10.1002/cssc.201802992
[39]
Smith I C, Hoke E T, Solis-Ibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew Chem, 2014, 126(42), 11414 doi: 10.1002/ange.201406466
[40]
Hu H, Salim T, Chen B, et al. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci Rep, 2016, 6, 33546 doi: 10.1038/srep33546
[41]
Stoumpos C C, Soe C M M, Tsai H, et al. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem, 2017, 2(3), 427 doi: 10.1016/j.chempr.2017.02.004
[42]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32(3), 510 doi: 10.1063/1.1736034
[43]
Blancon J C, Tsai H, Nie W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, eaal4211 doi: 10.1126/science.aal4211
[44]
Chao L, Niu T, Xia Y, et al. Efficient and stable low-dimensional Ruddlesden–Popper perovskite solar cells enabled by reducing tunnel barrier. J Phys Chem Lett, 2019, 10(6), 1173 doi: 10.1021/acs.jpclett.9b00276
[45]
Chen Y, Sun Y, Peng J, et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv Mater, 2018, 30(2), 1703487 doi: 10.1002/adma.201703487
[46]
Yan J, Qiu W, Wu G, et al. Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J Mater Chem A, 2018, 6(24), 11063 doi: 10.1039/C8TA02288G
[47]
Li H, Wang X, Zhang T, et al. Layered Ruddlesden–Popper efficient perovskite solar cells with controlled quantum and dielectric confinement introduced via doping. Adv Funct Mater, 2019, 29(30), 1903293 doi: 10.1002/adfm.201903293
[48]
Shi J, Gao Y, Gao X, et al. Fluorinated low-dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv Mater, 2019, 31(37), 1901673 doi: 10.1002/adma.201901673
[49]
Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 2016, 536(7616), 312 doi: 10.1038/nature18306
[50]
Zhang X, Ren X, Liu B, et al. Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy Environ Sci, 2017, 10(10), 2095 doi: 10.1039/C7EE01145H
[51]
Zhang S, Hosseini S M, Gunder R, et al. The role of bulk and interface recombination in high-efficiency low-dimensional perovskite solar cells. Adv Mater, 2019, 31(30), 1901090 doi: 10.1002/adma.201901090
[52]
Yang R, Li R, Cao Y, et al. Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv Mater, 2018, 30(51), 1804771 doi: 10.1002/adma.201804771
[53]
Lunardi M M, Ho-Baillie A W Y, Alvarez-Gaitan J P, et al. A life cycle assessment of perovskite/silicon tandem solar cells. Prog Photovolt Res Appl, 2017, 25(8), 679 doi: 10.1002/pip.2877
[54]
Gong J, Darling S B, You F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ Sci, 2015, 8(7), 1953 doi: 10.1039/C5EE00615E
[55]
Dong H, Xi J, Zuo L, et al. Conjugated molecules “bridge”: functional ligand toward highly efficient and long-term stable perovskite solar cell. Adv Funct Mater, 2019, 29(17), 1808119 doi: 10.1002/adfm.201808119
[56]
Yang D, Yang R, Priya S, et al. Recent advances in flexible perovskite solar cells: fabrication and applications. Angew Chem Int Ed, 2019, 58(14), 4466 doi: 10.1002/anie.201809781
[57]
Lam J Y, Chen J Y, Tsai P C, et al. A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Adv, 2017, 7(86), 54361 doi: 10.1039/C7RA10321B
[58]
Binek A, Petrus M L, Huber N, et al. Recycling perovskite solar cells to avoid lead waste. ACS Appl Mater Interfaces, 2016, 8(20), 12881 doi: 10.1021/acsami.6b03767
[59]
Razza S, Castro-Hermosa S, Di Carlo A, et al. Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater, 2016, 4 doi: 10.1063/1.4962478
[60]
Bashir A, Shukla S, Haur Lew, J, et al. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale, 2018, 10(5), 2341 doi: 10.1039/C7NR08289D
[61]
Cao K, Zuo Z, Cui J, et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17, 171 doi: 10.1016/j.nanoen.2015.08.009
[62]
Li P, Liang C, Bao B, et al. Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy, 2018, 46, 203 doi: 10.1016/j.nanoen.2018.01.049
[63]
Wei Z, Chen H, Yan K, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed, 2014, 53(48), 13239 doi: 10.1002/anie.201408638
[64]
Liu X, Guo X, Lv Y, et al. Enhanced performance and flexibility of perovskite solar cells based on microstructured multilayer transparent electrodes. ACS Appl Mater Interfaces, 2018, 10(21), 18141 doi: 10.1021/acsami.8b03557
[65]
Zardetto V, Brown T M, Reale A, et al. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B, 2011, 49(9), 638 doi: 10.1002/polb.22227
[66]
Xie H, Yin X, Guo Y, et al. Recent progress of flexible perovskite solar cells. Phys Status Solidi RRL, 2019, 13(5), 1800566 doi: 10.1002/pssr.201800566
[67]
Han G S, Lee S, Duff M L, et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates. ACS Appl Mater Interfaces, 2018, 10(5), 4697 doi: 10.1021/acsami.7b16499
[68]
Burst J M, Rance W L, Meysing D M, et al. Performance of transparent conductors on flexible glass and plastic substrates for thin film photovoltaics. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014, 1589
[69]
Zhu N, Qi X, Zhang Y, et al. High efficiency (18.53%) of flexible perovskite solar cells via the insertion of potassium chloride between SnO2 and CH3NH3PbI3 layers. ACS Appl. Energy Mater, 2019, 2(5), 3676 doi: 10.1021/acsaem.9b00391
[70]
Wu C, Wang D, Zhang Y, et al. FAPbI3 flexible solar cells with a record efficiency of 19.38% fabricated in air via ligand and additive synergetic process. Adv Funct Mater, 2019, 29(34), 1902974 doi: 10.1002/adfm.201902974
[71]
Park J I, Heo J H, Park S H, et al. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J Power Sources, 2017, 341, 340 doi: 10.1016/j.jpowsour.2016.12.026
[72]
Tavakoli M M, Tsui K H, Zhang Q, et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 2015, 9(10), 10287 doi: 10.1021/acsnano.5b04284
[73]
Dou B, Miller E M, Christians J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. J Phys Chem Lett, 2017, 8(19), 4960 doi: 10.1021/acs.jpclett.7b02128
[74]
Kim H I, Kim MJ, Choi K, et al. Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer. Adv Energy Mater, 2018, 8(16), 1702872 doi: 10.1002/aenm.201702872
[75]
Luo Q, Ma H, Hou Q, et al. All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater, 2018, 28(11), 1706777 doi: 10.1002/adfm.201706777
[76]
Gao L, Chen L, Huang S, et al. Flexible and highly durable perovskite solar cells with a sandwiched device structure. ACS Appl Mater Interfaces, 2019, 11(19), 17475 doi: 10.1021/acsami.9b04373
[77]
Guerrero A, You J, Aranda, C, et al. Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano, 2016, 10(1), 218 doi: 10.1021/acsnano.5b03687
[78]
Lee E, Ahn J, Kwon H C, et al. All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater, 2018, 8(9), 1702182 doi: 10.1002/aenm.201702182
[79]
Kang S, Jeong J, Cho S, et al. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. J Mater Chem A, 2019, 7(3), 1107 doi: 10.1039/C8TA10585E
[80]
Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ Sci, 2017, 10(1), 337 doi: 10.1039/C6EE02650H
[81]
Bi C, Chen B, Wei H, et al. Efficient flexible solar cell based on composition-tailored hybrid perovskite. Adv Mater, 2017, 29(30), 1605900 doi: 10.1002/adma.201605900
[82]
Zhao Q, Wu R, Zhang Z, et al. Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer. Org Electron, 2019, 71, 106 doi: 10.1016/j.orgel.2019.05.019
[83]
Schmidt T M, Larsen-Olsen T T, Carlé J E, et al. Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv Energy Mater, 2015, 5(15), 1500569 doi: 10.1002/aenm.201500569
[84]
Hwang K, Jung Y S, Heo Y J, et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater, 2015, 27(7), 1241 doi: 10.1002/adma.201404598
[85]
Zuo C, Vak D, Angmo D, et al. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 2018, 46, 185 doi: 10.1016/j.nanoen.2018.01.037
[86]
Galagan Y, Di Giacomo F, Gorter H, et al. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv Energy Mater, 2018, 8(32), 1801935 doi: 10.1002/aenm.201801935
[87]
Hao F, Stoumpos C C, Cao D H, et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics, 2014, 8(6), 489 doi: 10.1038/nphoton.2014.82
[88]
Giustino F, Snaith H J. Toward lead-free perovskite solar cells. ACS Energy Lett, 2016, 1(6), 1233 doi: 10.1021/acsenergylett.6b00499
[89]
Babayigit A, Duy Thanh D, Ethirajan A, et al. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio Rerio. Sci Rep, 2016, 6, 18721 doi: 10.1038/srep18721
[90]
Wu C, Zhang Q, Liu Y, et al. The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv Sci, 2018, 5(3), 1700759 doi: 10.1002/advs.201700759
[91]
Gao W, Ran C, Xi J, et al. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2 % efficiency. ChemPhysChem, 2018, 19(14), 1696 doi: 10.1002/cphc.201800346
[92]
Commission for Environmental Cooperation. Environmentally sound management of spent lead-acid batteries in north america. 2016
[93]
Chen P Y, Qi J, Klug M T, et al. Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries. Energy Environ Sci, 2014, 7(11), 3659 doi: 10.1039/C4EE00965G
[94]
Kim B J, Kim D H, Kwon S L, et al. Selective dissolution of halide perovskites as a step towards recycling solar cells. Nat Commun, 2016, 7, 11735 doi: 10.1038/ncomms11735
[95]
Mahalingam S, Raimi-Abraham B T, Craig D Q M, et al. Solubility–spinnability map and model for the preparation of fibres of polyethylene (terephthalate) using gyration and pressure. Chem Eng J, 2015, 280, 344 doi: 10.1016/j.cej.2015.05.114
[96]
Eco-Indicator – an overview. ScienceDirect Topics. https://www.sciencedirect.com/topics/engineering/eco-indicator
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5731 Times PDF downloads: 215 Times Cited by: 0 Times

    History

    Received: 30 December 2019 Revised: 10 March 2020 Online: Accepted Manuscript: 18 March 2020Uncorrected proof: 19 March 2020Published: 10 April 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Melissa Davis, Zhibin Yu. A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability[J]. Journal of Semiconductors, 2020, 41(4): 041603. doi: 10.1088/1674-4926/41/4/041603 M Davis, Z B Yu, A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability[J]. J. Semicond., 2020, 41(4): 041603. doi: 10.1088/1674-4926/41/4/041603.Export: BibTex EndNote
      Citation:
      Melissa Davis, Zhibin Yu. A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability[J]. Journal of Semiconductors, 2020, 41(4): 041603. doi: 10.1088/1674-4926/41/4/041603

      M Davis, Z B Yu, A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability[J]. J. Semicond., 2020, 41(4): 041603. doi: 10.1088/1674-4926/41/4/041603.
      Export: BibTex EndNote

      A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability

      doi: 10.1088/1674-4926/41/4/041603
      More Information
      • Corresponding author: zyu@fsu.edu
      • Received Date: 2019-12-30
      • Revised Date: 2020-03-10
      • Published Date: 2020-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return