REVIEWS

Nanofiber/nanowires-based flexible and stretchable sensors

Dongyi Wang1, Lili Wang1, and Guozhen Shen2, 3,

+ Author Affiliations

 Corresponding author: Lili Wang, lili_wang@jlu.edu.cn; Guozhen Shen, gzshen@semi.ac.cn

PDF

Turn off MathJax

Abstract: Nanofibers/nanowires with one-dimension (1D) nanostructure or well-patterned microstructure have shown distinctly advantages in flexible and stretchable sensor fields, owing to their remarkable tolerance against mechanical bending or stretching, outstanding electronic/optoelectronic properties, good transparency, and excellent geometry. Herein, latest summaries in the unique structure and properties of nanofiber/nanowire function materials and their applications for flexible and stretchable sensor are highlighted. Several types of high-performance nanofiber/nanowire-based flexible pressure and stretchable sensors are also reviewed. Finally, a conclusion and prospect for 1D nanofiber/nanowires-based flexible and stretchable sensors are also intensively discussed. This summary offers new insights for the development of flexible and stretchable sensor based 1D nanostructure in next-generation flexible electronics.

Key words: flexible electronicnanofibers/nanowiresone-dimension nanostructureflexible and stretchable sensor



[1]
Wang L L, Chen D, Jiang K, et al. New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev, 2017, 46, 6764 doi: 10.1039/C7CS00278E
[2]
Zhao L, Wang K, Wei W, et al. High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat, 2019, 1, 407 doi: 10.1002/inf2.12032
[3]
Wang K, Lou Z, Wang L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 2019, 13, 9139 doi: 10.1021/acsnano.9b03454
[4]
Lou Z, Wang L, Jiang K, et al. Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today, 2019, 26, 176 doi: 10.1016/j.nantod.2019.03.002
[5]
Bao Z N, Chen X D. Flexible and stretchable device. Adv Mater, 2016, 28, 4177 doi: 10.1002/adma.201601422
[6]
Ye D, Ding Y, Duan Y, et al. Large-scale direct-writing of aligned nanofibers for flexible electronics. Small, 2018, 14, 1703521 doi: 10.1002/smll.201703521
[7]
Jin J H, Lee D, Im H G, et al. Chitin nanofiber transparent paper for flexible green electronics. Adv Mater, 2016, 28, 5169 doi: 10.1002/adma.201600336
[8]
Wang K, Wei W, Lou Z, et al. 1D/2D heterostructure nanofiber flexible sensing device with efficient gas detectivity. Appl Surf Sci, 2019, 479, 209 doi: 10.1016/j.apsusc.2019.02.094
[9]
Wang K, Li J, Li W, et al. Highly active co-based catalyst in nanofiber matrix as advanced sensing layer for high selectivity of flexible sensing device. Adv Mater Technol, 2019, 4, 1800521 doi: 10.1002/admt.201800521
[10]
Wang L, Chen S, Li W, et al. Grain-boundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv Mater, 2019, 31, 1804583 doi: 10.1002/adma.201804583
[11]
Lou Z, Shen G Z. Flexible photodetectors based on 1D inorganic nanostructures. Adv Sci, 2016, 3, 1500287 doi: 10.1002/advs.201500287
[12]
Wang L, Deng J, Lou Z, et al. Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. J Mater Chem A, 2014, 2, 10022 doi: 10.1039/c4ta00651h
[13]
Li J, Wang L, Li L, et al. Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal–aspergillus niger bioleaching strategy. ACS Appl Mater Interfaces, 2019, 11, 8072 doi: 10.1021/acsami.8b21976
[14]
Zhuang X J, Ning C Z, Pan A. Composition and bandgap-graded semiconductor alloy nanowires. Adv Mater, 2012, 24, 13 doi: 10.1002/adma.201103191
[15]
Menzel A, Subannajui K, Güder F. Multifunctional ZnO-nanowire-based sensor. Adv Funct Mater, 2011, 21, 4342 doi: 10.1002/adfm.201101549
[16]
Wen B M, Sader J E, Boland J J, et al. Mechanical properties of ZnO nanowires. Phys Rev Lett, 2008, 101, 175502 doi: 10.1103/PhysRevLett.101.175502
[17]
Liu Z, Xu J, Chen D, et al. Flexible electronics based on inorganic nanowires. Chem Soc Rev, 2015, 44, 161 doi: 10.1039/C4CS00116H
[18]
Chowdhury S A, Saha M C, Patterson S, et al. Highly conductive polydimethylsiloxane/carbon nanofiber composites for flexible sensor applications. Adv Mater Technol, 2019, 4, 1800398 doi: 10.1002/admt.201800398
[19]
Nan N, He J, You X, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive nanofiber yarn for wearable electronics. Adv Mater Technol, 2019, 4, 1800338 doi: 10.1002/admt.201800338
[20]
Chen L F, Feng Y, Liang H W, et al. Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv Energy Mater, 2017, 7, 1700826 doi: 10.1002/aenm.201700826
[21]
Choi S J, Persano L, Camposeo A, et al. Electrospun nanostructures for high performance chemiresistive and optical sensors. Macromol Mater Eng, 2017, 302, 1600569 doi: 10.1002/mame.201600569
[22]
Rasouli R, Barhoum A, Bechelany M. Nanofibers for biomedical and healthcare applications. Macromol Biosci, 2019, 19, 1800256 doi: 10.1002/mabi.201800256
[23]
Camposeo A, Persano L, Pisignano D, et al. Light-emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol Mater Eng, 2013, 298, 487 doi: 10.1002/mame.201200277
[24]
Nguyen L T H, Chen S, Elumalai N K, et al. Biological, chemical, and electronic applications of nanofibers. Macromol Mater Eng, 2013, 298, 822 doi: 10.1002/mame.201200143
[25]
Wang J, Lu C, Zhang K. Textile-based strain sensor for human motion detection. Energy Environ Mater, 2019, 0, 1 doi: 10.1002/eem2.12041
[26]
Sill T J, Recum H A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 2008, 29, 1989 doi: 10.1016/j.biomaterials.2008.01.011
[27]
Zhang Y, Yuan S, Feng X, et al. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J Am Chem Soc, 2016, 138, 5785 doi: 10.1021/jacs.6b02553
[28]
Shuai X T, Zhu P L, Zeng W J, et al. Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl Mater Interfaces, 2017, 9, 26314 doi: 10.1021/acsami.7b05753
[29]
Wan L Y. Nanofibers for smart textiles. Wiley, 2018
[30]
Ko F K, Kuznetsov V, Flahaut E. Formation of nanofibers and nanotubes production. Nanoeng Nanofibrous Mater, 2004 doi: 10.1007/978-1-4020-2550-1_1
[31]
Nabet B. When is small good? on unusual electronic properties of nanowires ECE Department, Philadelphia, 2002, 19104
[32]
El-Aufy A, Nabet B, Ko F. Carbon nanotube reinforced (PEDT/PAN) nanocomposite for wearable electronics. Polym Prepr, 2003, 44, 134
[33]
Wang L, Wang K, Lou Z, et al. Plant-based modular building blocks for “green” electronic skins. Adv Funct Mater, 2018, 28, 1804510 doi: 10.1002/adfm.201804510
[34]
Wang L, Jackman J A, Ng W B, et al. Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv Funct Mater, 2016, 26, 8623 doi: 10.1002/adfm.201603550
[35]
Wang L, Jackman J A, Park J H, et al. A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. J Mater Chem B, 2017, 5, 4019 doi: 10.1039/C7TB00787F
[36]
Ren G Y, Cai F Y, Li B Z, et al. Flexible pressure sensor based on a poly(VDF-TrFE) nanofiber web. Macromol Mater Eng, 2013, 298, 541 doi: 10.1002/mame.201200218
[37]
Lee J H, Kim J, Liu D, et al. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv Funct Mater, 2019, 29, 1901623 doi: 10.1002/adfm.201901623
[38]
Wang Q, Jian M Q, Wang C Y, et al. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater, 2017, 27, 1605657 doi: 10.1002/adfm.201605657
[39]
Zhao G R, Huang B S, Zhang J X, et at. Electrospun poly(l-lactic acid) nanofibers for nanogenerator and diagnostic sensor applications. Macromol Mater Eng, 2017, 302, 1600476 doi: 10.1002/mame.201600476
[40]
Gao Q, Meguro H, Okamoto S, et al. Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. Langmuir, 2012, 28, 17593 doi: 10.1021/la304240r
[41]
Wang J, Suzuki R, Shao M, et al. Capacitive pressure sensor with wide-range, bendable, and high sensitivity based on the bionic komochi konbu structure and Cu/Ni nanofiber network. ACS Appl Mater Interfaces, 2019, 11, 11928 doi: 10.1021/acsami.9b00941
[42]
Roy K, Ghosh S K, Sultana A, et al. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl Nano Mater, 2019, 2, 2013 doi: 10.1021/acsanm.9b00033
[43]
Zhao G R, Zhang X D, Cui X, et al. Piezoelectric polyacrylonitrile nanofiber film-based dual-function self-powered flexible sensor. ACS Appl Mater Interfaces, 2018, 10, 15855 doi: 10.1021/acsami.8b02564
[44]
Qi K, He J X, Wang H B, et al. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl Mater Interfaces, 2017, 9, 42951 doi: 10.1021/acsami.7b07935
[45]
Lou M, Abdalla I, Zhu M M, et al. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl Mater Interfaces, 2020, 12, 1597 doi: 10.1021/acsami.9b19238
[46]
Wu S Y, Zhang J, Ladani R B, et al. Novel electrically conductive porous PDMS/Carbon nanofiber composites for deformable strain sensors and conductors. ACS Appl Mater Interfaces, 2017, 9, 14207 doi: 10.1021/acsami.7b00847
[47]
Garain S, Jana S, Kumar T, et al. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces, 2016, 8, 4532 doi: 10.1021/acsami.5b11356
[48]
Deng W L, Yang T, Jing L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55, 516 doi: 10.1016/j.nanoen.2018.10.049
[49]
Gao J F, Li B, Huang X W, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem Eng J, 2019, 373, 298 doi: 10.1016/j.cej.2019.05.045
[50]
Yan T, Wang Z, Wang Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors. Mater Des, 2018, 143, 214 doi: 10.1016/j.matdes.2018.02.006
[51]
Lin M F, Xiong J Q, Wang J X, et al. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248 doi: 10.1016/j.nanoen.2017.12.004
[52]
Jiang D W, Wang Y, Li B, et al. Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromol Mater Eng, 2019, 304, 1900074 doi: 10.1002/mame.201900074
[53]
Kang M, Park J H, Lee K I, et al. Fully flexible and transparent piezoelectric touch sensors based on ZnO nanowires and BaTiO3-added SiO2 capping layers. Phys Status Solidi A, 2015, 212, 2005 doi: 10.1002/pssa.201431829
[54]
Wang Y, Zhu L P, Du C F. Flexible difunctional (pressure and light) sensors based on ZnO nanowires/graphene heterostructures. Adv Mater Interfaces, 2000, 7, 1901932 doi: 10.1002/admi.201901932
[55]
Lee T, Lee W, Kim S W, et al. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater, 2016, 26, 6206 doi: 10.1002/adfm.201601237
[56]
Shi X Q, Peng M Z, Kou J Z, et al. A flexible GaN nanowire array-based schottky-type visible light sensor with strain-enhanced photoresponsivity. Adv Electron Mater, 2015, 1, 1500169 doi: 10.1002/aelm.201500169
[57]
Kim Y, Kim J W. Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor. Appl Surf Sci, 2016, 363, 1 doi: 10.1016/j.apsusc.2015.11.052
[58]
Peng Y Y, Que M L, Lee H E, et al. Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy, 2019, 58, 633 doi: 10.1016/j.nanoen.2019.01.076
[59]
Xu X J, Wang R R, Nie P, et al. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl Mater Interfaces, 2017, 9, 14273 doi: 10.1021/acsami.7b02087
[60]
Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano, 2014, 8, 5154 doi: 10.1021/nn501204t
[61]
Lou C, Liu N S, Zhang H, et al. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer. Nano Energy, 2017, 41, 527 doi: 10.1016/j.nanoen.2017.10.007
[62]
Xu S Y, Yeh Y W, Poirier G. Flexible piezoelectric PMN–PT nanowire-based nanocomposite and device. Nano Lett, 2013, 13, 2393 doi: 10.1021/nl400169t
[63]
Wang L, Jackman J A, Tan E L, et al. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy, 2017, 36, 38 doi: 10.1016/j.nanoen.2017.04.015
[64]
Lou Z, Chen S, Wang L. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38, 28 doi: 10.1016/j.nanoen.2017.05.024
[65]
Tao L Q, Zhang K N, Tian H, et al. Graphene-paper pressure sensor for detecting human motions. ACS Nano, 2017, 11, 8790 doi: 10.1021/acsnano.7b02826
[66]
Ren Y, Zou Y D, Liu Y, et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat Mater, 2020, 19, 203 doi: 10.1038/s41563-019-0542-x
[67]
Wang L, Luo X, Zheng X, et al. Direct annealing of electrospun synthesized high-performance porous SnO2 hollow nanofibers for gas sensors. RSC Adv, 2013, 3, 9723 doi: 10.1039/c3ra41032c
[68]
Lou Z, Wang L, Wang R, et al. Synthesis and ethanol sensing properties of SnO2 nanosheets via a simple hydrothermal route. Solid-State Electron, 2012, 76, 91 doi: 10.1016/j.sse.2012.05.062
[69]
Han S J, Liu C R, Xu H H, et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flex Electron, 2018, 2, 16 doi: 10.1038/s41528-018-0029-x
[70]
Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5, 3132 doi: 10.1038/ncomms4132
[71]
Zhu B, Ling Y, Yap L W, et al. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl Mater Interfaces, 2019, 11, 29014 doi: 10.1021/acsami.9b06260
[72]
Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23, 7 doi: 10.1016/j.nanoen.2016.02.053
[73]
Wang G, Liu T, Sun X C, et al. Flexible pressure sensor based on PVDF nanofiber. Sens Actuators A, 2018, 280, 319 doi: 10.1016/j.sna.2018.07.057
[74]
Han X, Du W, Chen M, et al. Visualization recording and storage of pressure distribution through a smart matrix based on the piezotronic effect. Adv Mater, 2017, 29, 1701253 doi: 10.1002/adma.201701253
[75]
Chen Z, Wang Z, Li X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano, 2017, 11, 4507 doi: 10.1021/acsnano.6b08027
[76]
Li Y Q, Samad Y, Taha T, et al. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain Chem Eng, 2016, 4, 4288 doi: 10.1021/acssuschemeng.6b00783
[77]
Oh J, Yang J C, Kim J O, et al. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano, 2018, 12, 8, 7546 doi: 10.1021/acsnano.8b03488
[78]
Zhang J, Liu J, Zhuang R, et al. Single MWNT-glass fiber as strain sensor and switch. Adv Mater, 2011, 23, 3392 doi: 10.1002/adma.201101104
[79]
Peng Y, Lu J, Peng D, et al. Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv Funct Mater, 2019, 29, 1905051 doi: 10.1002/adfm.201905051
[80]
Zhou W, Li Y, Li P, et al. Metal mesh as a transparent omnidirectional strain sensor. Adv Mater Technol, 2019, 4, 1800698 doi: 10.1002/admt.201800698
[81]
Ren J, Zhang W, Wang Y, et al. A graphene rheostat for highly durable and stretchable strain sensor. InfoMat, 2019, 1, 396 doi: 10.1002/inf2.12030
[82]
Chen S, Song Y, Ding D, et al. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv Funct Mater, 2018, 28, 1802547 doi: 10.1002/adfm.201802547
[83]
Lee B M, Oh J Y, Cho H, et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat Commun, 2020, 11, 663 doi: 10.1038/s41467-020-14485-9
[84]
Sun Q J, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27, 3411 doi: 10.1002/adma.201500582
[85]
Chen S, Lou Z, Chen D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technol, 2016, 1600136 doi: 10.1002/admt.201600136
[86]
Roh E, Hwang B U, Kim D, et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano, 2015, 9, 6252 doi: 10.1021/acsnano.5b01613
[87]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6, 296 doi: 10.1038/nnano.2011.36
[88]
Choi G, Jang H, Oh S, et al. A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. J Mater Chem C, 2019, 7, 9504 doi: 10.1039/C9TC02486G
Fig. 1.  (Color online) Schematic of nanofibers/nanowires-based flexible and stretchable sensors.

Fig. 2.  (Color online) Graphical summaries of advantages of possible flexible and stretchable sensors application of 1D nanofibers/nanowires materials.

Fig. 3.  (Color online) (a) Illustration of the preparation and structure of the Au nanowires-based flexible pressure sensor. (b) Optical image of the Au nanowires-based flexible pressure sensor. Inset show the SEM image of Au nanowires (scale bar, 100 mm). (c) Optical image of device attached on the wrist. (d) pulse change records of device attached on the wrist. (e) Schematic illustration of the setup for acoustic vibration sensing. (f) The current responses to the acoustic vibrations from a piece of music. Reproduced from Ref. [70] with permission, Copyright 2014, Macmillan Publishers Limited. (g) Illustration of the preparation process of vertically arranged gold nanowires on microstructured PDMS films. (h) Schematic showing the sensor structure. (i) Response time and recovery time of vertically arranged gold nanowires-based flexible pressure sensor under both loading and unloading conditions. Reproduced from Ref. [71] with permission, Copyright 2019, American Chemical Society.

Fig. 4.  (Color online) (a) Illustration of fabrication process of rGO/PVDF nanofibers-based flexible pressure sensor. (b) SEM image of rGO/PVDF nanofibers. (c) Illustration of a flexible pressure sensor structure. (d) Sensitivity of rGO/PVDF nanofibers-based flexible pressure sensor under different force conditions. (e) dynamic response curves of rGO/PVDF nanofibers-based flexible pressure sensor for different objects. (f, g) Response curves of rGO/PVDF nanofibers-based flexible pressure sensor attached on the wrist under different condition. Reproduced from Ref. [72] with permission, Copyright 2016, Elsevier B.V. (h, i) Structure and fabrication process of the PVR system. SEM image of the as-obtain (j) ZnO nanowire and (k) WO3 film array. Enlarged SEM images of (j1, j2) the ZnO nanowire before and after spin-coating the photoresist layer and (k1, k2) The WO3 film deposited on the ITO electrode. Reproduced from Ref. [74] with permission, Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (l) Pressure response of the PTNWs/G-based sensors. (m) dynamic pressure-sensing curves of the PTNWs/G-based sensors. Reproduced from Ref. [75] with permission, Copyright 2017, American Chemical Society.

Fig. 5.  (Color online) (a) Schematic structure and (b) high-magnification SEM image of the P(VDF-TrFE)-based conductive fiber. (c) Pulse and (d) spoke response curves of the P(VDF-TrFE)-based fibrous sensor. (e) A data glove fixed with ten-fiber strain sensors. Reproduced from Ref. [85] with permission, Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) Illustration of preparation process and (g) optical image of Ag nanowires/PDMS-based sandwich-structured strain sensors. (h) Optical image of the Ag nanowires/PDMS-based strain sensor under bending and twisting. (i) optical images on top and cross-section of Ag nanowires/PDMS-based strain sensor. (j) Finger motion detection and (k) smart glove system by Ag nanowires/PDMS-based sandwich-structured strain sensors. Reproduced from Ref. [60] with permission, Copyright 2014, American Chemical Society.

Fig. 6.  (Color online) (a) Illustration of fabrication process of SWCNT-based strain sensor. (b) Optical image of the SWCNT-based strain sensor under strain. (c) SEM image of SWCNT. (d) Stretchable wearable sensors on the human body. (e) Finger motion detection of stretchable wearable sensors. Reproduced from Ref. [87] with permission, Copyright 2011, Macmillan Publishers Limited. (f) Illustration of fabrication process of CNT-based strain sensor. (g) Optical images of the CNT-based strain sensor. (h) Top-view and (i) cross-section view SEM image of CNT materials. (j) Brushing test and (k) joystick movements of CNT-based strain sensors. Reproduced from Ref. [88] with permission, Copyright 2019, The Royal Society of Chemistry.

Table 1.   Summary of various 1D nanostructure materials based flexible and stretchable sensors.

MaterialStructureApplicationReference
Poly(VDF-TrFE)NanofiberPressure sensor[36]
Carbon nanofiberNanofiberStrain sensor[37]
SilkNanofiberPressure sensor[38]
Poly(l-lactic acid)NanofiberPressure sensor[39]
Poly(3-hexylthiophene) Nanofiber Pressure sensor [40]
Cu/Ni Nanofiber Pressure sensor [41]
GO/PVDF Nanofiber Pressure sensor [42]
Polyacrylonitrile Nanofiber Pressure sensor [43]
GO/PU Nanofiber Pressure sensor [44]
Strain sensor
Polyvinylidene fluoride/Ag Nanofiber Pressure sensor [45]
PDMS/Carbon Nanofiber Strain sensor [46]
PVDF/Graphene Nanofiber Pressure sensor [47]
ZnO/PVDF Nanofiber Pressure sensor [48]
SiO2/Graphene Nanofiber Strain sensor [49]
Carbon/Graphene Nanofiber Strain sensor [50]
PDMS ion gel /PVDF-HFP Nanofiber Pressure sensor [51]
Ag Nanowire Strain sensor [52]
ZnO Nanowire Pressure sensor [53]
ZnO/Graphene Nanowire Pressure sensor [54]
ZnO Nanowire Strain sensor [55]
GaN Nanowire Strain sensor [56]
Ag Nanowire Pressure sensor [57]
Gan/ZnO Nanowire Pressure sensor [58]
Cu Nanowire Pressure sensor [59]
Ag Nanowire Strain sensor [60]
PVA/PPy Nanowire Pressure sensor [61]
PMN-PT Nanowire Pressure sensor [62]
DownLoad: CSV
[1]
Wang L L, Chen D, Jiang K, et al. New insights and perspectives into biological materials for flexible electronics. Chem Soc Rev, 2017, 46, 6764 doi: 10.1039/C7CS00278E
[2]
Zhao L, Wang K, Wei W, et al. High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat, 2019, 1, 407 doi: 10.1002/inf2.12032
[3]
Wang K, Lou Z, Wang L, et al. Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano, 2019, 13, 9139 doi: 10.1021/acsnano.9b03454
[4]
Lou Z, Wang L, Jiang K, et al. Programmable three-dimensional advanced materials based on nanostructures as building blocks for flexible sensors. Nano Today, 2019, 26, 176 doi: 10.1016/j.nantod.2019.03.002
[5]
Bao Z N, Chen X D. Flexible and stretchable device. Adv Mater, 2016, 28, 4177 doi: 10.1002/adma.201601422
[6]
Ye D, Ding Y, Duan Y, et al. Large-scale direct-writing of aligned nanofibers for flexible electronics. Small, 2018, 14, 1703521 doi: 10.1002/smll.201703521
[7]
Jin J H, Lee D, Im H G, et al. Chitin nanofiber transparent paper for flexible green electronics. Adv Mater, 2016, 28, 5169 doi: 10.1002/adma.201600336
[8]
Wang K, Wei W, Lou Z, et al. 1D/2D heterostructure nanofiber flexible sensing device with efficient gas detectivity. Appl Surf Sci, 2019, 479, 209 doi: 10.1016/j.apsusc.2019.02.094
[9]
Wang K, Li J, Li W, et al. Highly active co-based catalyst in nanofiber matrix as advanced sensing layer for high selectivity of flexible sensing device. Adv Mater Technol, 2019, 4, 1800521 doi: 10.1002/admt.201800521
[10]
Wang L, Chen S, Li W, et al. Grain-boundary-induced drastic sensing performance enhancement of polycrystalline-microwire printed gas sensors. Adv Mater, 2019, 31, 1804583 doi: 10.1002/adma.201804583
[11]
Lou Z, Shen G Z. Flexible photodetectors based on 1D inorganic nanostructures. Adv Sci, 2016, 3, 1500287 doi: 10.1002/advs.201500287
[12]
Wang L, Deng J, Lou Z, et al. Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. J Mater Chem A, 2014, 2, 10022 doi: 10.1039/c4ta00651h
[13]
Li J, Wang L, Li L, et al. Metal sulfides@carbon microfiber networks for boosting lithium ion/sodium ion storage via a general metal–aspergillus niger bioleaching strategy. ACS Appl Mater Interfaces, 2019, 11, 8072 doi: 10.1021/acsami.8b21976
[14]
Zhuang X J, Ning C Z, Pan A. Composition and bandgap-graded semiconductor alloy nanowires. Adv Mater, 2012, 24, 13 doi: 10.1002/adma.201103191
[15]
Menzel A, Subannajui K, Güder F. Multifunctional ZnO-nanowire-based sensor. Adv Funct Mater, 2011, 21, 4342 doi: 10.1002/adfm.201101549
[16]
Wen B M, Sader J E, Boland J J, et al. Mechanical properties of ZnO nanowires. Phys Rev Lett, 2008, 101, 175502 doi: 10.1103/PhysRevLett.101.175502
[17]
Liu Z, Xu J, Chen D, et al. Flexible electronics based on inorganic nanowires. Chem Soc Rev, 2015, 44, 161 doi: 10.1039/C4CS00116H
[18]
Chowdhury S A, Saha M C, Patterson S, et al. Highly conductive polydimethylsiloxane/carbon nanofiber composites for flexible sensor applications. Adv Mater Technol, 2019, 4, 1800398 doi: 10.1002/admt.201800398
[19]
Nan N, He J, You X, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive nanofiber yarn for wearable electronics. Adv Mater Technol, 2019, 4, 1800338 doi: 10.1002/admt.201800338
[20]
Chen L F, Feng Y, Liang H W, et al. Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices. Adv Energy Mater, 2017, 7, 1700826 doi: 10.1002/aenm.201700826
[21]
Choi S J, Persano L, Camposeo A, et al. Electrospun nanostructures for high performance chemiresistive and optical sensors. Macromol Mater Eng, 2017, 302, 1600569 doi: 10.1002/mame.201600569
[22]
Rasouli R, Barhoum A, Bechelany M. Nanofibers for biomedical and healthcare applications. Macromol Biosci, 2019, 19, 1800256 doi: 10.1002/mabi.201800256
[23]
Camposeo A, Persano L, Pisignano D, et al. Light-emitting electrospun nanofibers for nanophotonics and optoelectronics. Macromol Mater Eng, 2013, 298, 487 doi: 10.1002/mame.201200277
[24]
Nguyen L T H, Chen S, Elumalai N K, et al. Biological, chemical, and electronic applications of nanofibers. Macromol Mater Eng, 2013, 298, 822 doi: 10.1002/mame.201200143
[25]
Wang J, Lu C, Zhang K. Textile-based strain sensor for human motion detection. Energy Environ Mater, 2019, 0, 1 doi: 10.1002/eem2.12041
[26]
Sill T J, Recum H A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 2008, 29, 1989 doi: 10.1016/j.biomaterials.2008.01.011
[27]
Zhang Y, Yuan S, Feng X, et al. Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J Am Chem Soc, 2016, 138, 5785 doi: 10.1021/jacs.6b02553
[28]
Shuai X T, Zhu P L, Zeng W J, et al. Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl Mater Interfaces, 2017, 9, 26314 doi: 10.1021/acsami.7b05753
[29]
Wan L Y. Nanofibers for smart textiles. Wiley, 2018
[30]
Ko F K, Kuznetsov V, Flahaut E. Formation of nanofibers and nanotubes production. Nanoeng Nanofibrous Mater, 2004 doi: 10.1007/978-1-4020-2550-1_1
[31]
Nabet B. When is small good? on unusual electronic properties of nanowires ECE Department, Philadelphia, 2002, 19104
[32]
El-Aufy A, Nabet B, Ko F. Carbon nanotube reinforced (PEDT/PAN) nanocomposite for wearable electronics. Polym Prepr, 2003, 44, 134
[33]
Wang L, Wang K, Lou Z, et al. Plant-based modular building blocks for “green” electronic skins. Adv Funct Mater, 2018, 28, 1804510 doi: 10.1002/adfm.201804510
[34]
Wang L, Jackman J A, Ng W B, et al. Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv Funct Mater, 2016, 26, 8623 doi: 10.1002/adfm.201603550
[35]
Wang L, Jackman J A, Park J H, et al. A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection. J Mater Chem B, 2017, 5, 4019 doi: 10.1039/C7TB00787F
[36]
Ren G Y, Cai F Y, Li B Z, et al. Flexible pressure sensor based on a poly(VDF-TrFE) nanofiber web. Macromol Mater Eng, 2013, 298, 541 doi: 10.1002/mame.201200218
[37]
Lee J H, Kim J, Liu D, et al. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Adv Funct Mater, 2019, 29, 1901623 doi: 10.1002/adfm.201901623
[38]
Wang Q, Jian M Q, Wang C Y, et al. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater, 2017, 27, 1605657 doi: 10.1002/adfm.201605657
[39]
Zhao G R, Huang B S, Zhang J X, et at. Electrospun poly(l-lactic acid) nanofibers for nanogenerator and diagnostic sensor applications. Macromol Mater Eng, 2017, 302, 1600476 doi: 10.1002/mame.201600476
[40]
Gao Q, Meguro H, Okamoto S, et al. Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies. Langmuir, 2012, 28, 17593 doi: 10.1021/la304240r
[41]
Wang J, Suzuki R, Shao M, et al. Capacitive pressure sensor with wide-range, bendable, and high sensitivity based on the bionic komochi konbu structure and Cu/Ni nanofiber network. ACS Appl Mater Interfaces, 2019, 11, 11928 doi: 10.1021/acsami.9b00941
[42]
Roy K, Ghosh S K, Sultana A, et al. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl Nano Mater, 2019, 2, 2013 doi: 10.1021/acsanm.9b00033
[43]
Zhao G R, Zhang X D, Cui X, et al. Piezoelectric polyacrylonitrile nanofiber film-based dual-function self-powered flexible sensor. ACS Appl Mater Interfaces, 2018, 10, 15855 doi: 10.1021/acsami.8b02564
[44]
Qi K, He J X, Wang H B, et al. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl Mater Interfaces, 2017, 9, 42951 doi: 10.1021/acsami.7b07935
[45]
Lou M, Abdalla I, Zhu M M, et al. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl Mater Interfaces, 2020, 12, 1597 doi: 10.1021/acsami.9b19238
[46]
Wu S Y, Zhang J, Ladani R B, et al. Novel electrically conductive porous PDMS/Carbon nanofiber composites for deformable strain sensors and conductors. ACS Appl Mater Interfaces, 2017, 9, 14207 doi: 10.1021/acsami.7b00847
[47]
Garain S, Jana S, Kumar T, et al. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl Mater Interfaces, 2016, 8, 4532 doi: 10.1021/acsami.5b11356
[48]
Deng W L, Yang T, Jing L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 2019, 55, 516 doi: 10.1016/j.nanoen.2018.10.049
[49]
Gao J F, Li B, Huang X W, et al. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem Eng J, 2019, 373, 298 doi: 10.1016/j.cej.2019.05.045
[50]
Yan T, Wang Z, Wang Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors. Mater Des, 2018, 143, 214 doi: 10.1016/j.matdes.2018.02.006
[51]
Lin M F, Xiong J Q, Wang J X, et al. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248 doi: 10.1016/j.nanoen.2017.12.004
[52]
Jiang D W, Wang Y, Li B, et al. Flexible sandwich structural strain sensor based on silver nanowires decorated with self-healing substrate. Macromol Mater Eng, 2019, 304, 1900074 doi: 10.1002/mame.201900074
[53]
Kang M, Park J H, Lee K I, et al. Fully flexible and transparent piezoelectric touch sensors based on ZnO nanowires and BaTiO3-added SiO2 capping layers. Phys Status Solidi A, 2015, 212, 2005 doi: 10.1002/pssa.201431829
[54]
Wang Y, Zhu L P, Du C F. Flexible difunctional (pressure and light) sensors based on ZnO nanowires/graphene heterostructures. Adv Mater Interfaces, 2000, 7, 1901932 doi: 10.1002/admi.201901932
[55]
Lee T, Lee W, Kim S W, et al. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater, 2016, 26, 6206 doi: 10.1002/adfm.201601237
[56]
Shi X Q, Peng M Z, Kou J Z, et al. A flexible GaN nanowire array-based schottky-type visible light sensor with strain-enhanced photoresponsivity. Adv Electron Mater, 2015, 1, 1500169 doi: 10.1002/aelm.201500169
[57]
Kim Y, Kim J W. Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor. Appl Surf Sci, 2016, 363, 1 doi: 10.1016/j.apsusc.2015.11.052
[58]
Peng Y Y, Que M L, Lee H E, et al. Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy, 2019, 58, 633 doi: 10.1016/j.nanoen.2019.01.076
[59]
Xu X J, Wang R R, Nie P, et al. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl Mater Interfaces, 2017, 9, 14273 doi: 10.1021/acsami.7b02087
[60]
Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano, 2014, 8, 5154 doi: 10.1021/nn501204t
[61]
Lou C, Liu N S, Zhang H, et al. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer. Nano Energy, 2017, 41, 527 doi: 10.1016/j.nanoen.2017.10.007
[62]
Xu S Y, Yeh Y W, Poirier G. Flexible piezoelectric PMN–PT nanowire-based nanocomposite and device. Nano Lett, 2013, 13, 2393 doi: 10.1021/nl400169t
[63]
Wang L, Jackman J A, Tan E L, et al. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy, 2017, 36, 38 doi: 10.1016/j.nanoen.2017.04.015
[64]
Lou Z, Chen S, Wang L. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38, 28 doi: 10.1016/j.nanoen.2017.05.024
[65]
Tao L Q, Zhang K N, Tian H, et al. Graphene-paper pressure sensor for detecting human motions. ACS Nano, 2017, 11, 8790 doi: 10.1021/acsnano.7b02826
[66]
Ren Y, Zou Y D, Liu Y, et al. Synthesis of orthogonally assembled 3D cross-stacked metal oxide semiconducting nanowires. Nat Mater, 2020, 19, 203 doi: 10.1038/s41563-019-0542-x
[67]
Wang L, Luo X, Zheng X, et al. Direct annealing of electrospun synthesized high-performance porous SnO2 hollow nanofibers for gas sensors. RSC Adv, 2013, 3, 9723 doi: 10.1039/c3ra41032c
[68]
Lou Z, Wang L, Wang R, et al. Synthesis and ethanol sensing properties of SnO2 nanosheets via a simple hydrothermal route. Solid-State Electron, 2012, 76, 91 doi: 10.1016/j.sse.2012.05.062
[69]
Han S J, Liu C R, Xu H H, et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flex Electron, 2018, 2, 16 doi: 10.1038/s41528-018-0029-x
[70]
Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5, 3132 doi: 10.1038/ncomms4132
[71]
Zhu B, Ling Y, Yap L W, et al. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl Mater Interfaces, 2019, 11, 29014 doi: 10.1021/acsami.9b06260
[72]
Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23, 7 doi: 10.1016/j.nanoen.2016.02.053
[73]
Wang G, Liu T, Sun X C, et al. Flexible pressure sensor based on PVDF nanofiber. Sens Actuators A, 2018, 280, 319 doi: 10.1016/j.sna.2018.07.057
[74]
Han X, Du W, Chen M, et al. Visualization recording and storage of pressure distribution through a smart matrix based on the piezotronic effect. Adv Mater, 2017, 29, 1701253 doi: 10.1002/adma.201701253
[75]
Chen Z, Wang Z, Li X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano, 2017, 11, 4507 doi: 10.1021/acsnano.6b08027
[76]
Li Y Q, Samad Y, Taha T, et al. Highly flexible strain sensor from tissue paper for wearable electronics. ACS Sustain Chem Eng, 2016, 4, 4288 doi: 10.1021/acssuschemeng.6b00783
[77]
Oh J, Yang J C, Kim J O, et al. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano, 2018, 12, 8, 7546 doi: 10.1021/acsnano.8b03488
[78]
Zhang J, Liu J, Zhuang R, et al. Single MWNT-glass fiber as strain sensor and switch. Adv Mater, 2011, 23, 3392 doi: 10.1002/adma.201101104
[79]
Peng Y, Lu J, Peng D, et al. Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv Funct Mater, 2019, 29, 1905051 doi: 10.1002/adfm.201905051
[80]
Zhou W, Li Y, Li P, et al. Metal mesh as a transparent omnidirectional strain sensor. Adv Mater Technol, 2019, 4, 1800698 doi: 10.1002/admt.201800698
[81]
Ren J, Zhang W, Wang Y, et al. A graphene rheostat for highly durable and stretchable strain sensor. InfoMat, 2019, 1, 396 doi: 10.1002/inf2.12030
[82]
Chen S, Song Y, Ding D, et al. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers. Adv Funct Mater, 2018, 28, 1802547 doi: 10.1002/adfm.201802547
[83]
Lee B M, Oh J Y, Cho H, et al. Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat Commun, 2020, 11, 663 doi: 10.1038/s41467-020-14485-9
[84]
Sun Q J, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27, 3411 doi: 10.1002/adma.201500582
[85]
Chen S, Lou Z, Chen D, et al. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technol, 2016, 1600136 doi: 10.1002/admt.201600136
[86]
Roh E, Hwang B U, Kim D, et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano, 2015, 9, 6252 doi: 10.1021/acsnano.5b01613
[87]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6, 296 doi: 10.1038/nnano.2011.36
[88]
Choi G, Jang H, Oh S, et al. A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor. J Mater Chem C, 2019, 7, 9504 doi: 10.1039/C9TC02486G
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5203 Times PDF downloads: 231 Times Cited by: 0 Times

    History

    Received: 31 January 2020 Revised: 06 March 2020 Online: Accepted Manuscript: 14 March 2020Uncorrected proof: 16 March 2020Published: 10 April 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dongyi Wang, Lili Wang, Guozhen Shen. Nanofiber/nanowires-based flexible and stretchable sensors[J]. Journal of Semiconductors, 2020, 41(4): 041605. doi: 10.1088/1674-4926/41/4/041605 D Y Wang, L L Wang, G Z Shen, Nanofiber/nanowires-based flexible and stretchable sensors[J]. J. Semicond., 2020, 41(4): 041605. doi: 10.1088/1674-4926/41/4/041605.Export: BibTex EndNote
      Citation:
      Dongyi Wang, Lili Wang, Guozhen Shen. Nanofiber/nanowires-based flexible and stretchable sensors[J]. Journal of Semiconductors, 2020, 41(4): 041605. doi: 10.1088/1674-4926/41/4/041605

      D Y Wang, L L Wang, G Z Shen, Nanofiber/nanowires-based flexible and stretchable sensors[J]. J. Semicond., 2020, 41(4): 041605. doi: 10.1088/1674-4926/41/4/041605.
      Export: BibTex EndNote

      Nanofiber/nanowires-based flexible and stretchable sensors

      doi: 10.1088/1674-4926/41/4/041605
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return