ARTICLES

Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I)

Zhongti Sun1, 2, Xiwen Chen1, 2 and Wanjian Yin1, 2, 3,

+ Author Affiliations

 Corresponding author: Wanjian Yin, Email: wjyin@suda.edu.cn

PDF

Turn off MathJax

Abstract: Recently, inorganic copper-based halide perovskites and their derivatives (CHPs) with chemical formulas AlCumXn (A = Rb and Cs; X = Cl, Br and I; l, m, and n are integers.), have received increasing attention in the photoluminescence field, due to their lead-free, cost-effective, earth-abundant and low electronic dimensionality. Ascribed to flexible valence charge of Cu (Cu1+ and Cu2+) and complex competing phases, the crystal structures and phase stabilities of CHPs are complicated and ambiguous, which limits their experimental applications. Via comprehensive first-principles calculations, we have investigated thermodynamic stabilities of possible crystal phases for AlCumXn by considering all the possible secondary phases existing in inorganic crystal structure database (ICSD). Our results are in agreement with existing experiments and further predicted the existence of 10 stable CHPs, i.e. Rb3Cu2Br5, Rb3Cu2I5, RbCu2Cl3, Rb2CuI3, Rb2CuBr4, RbCuBr3, Rb3Cu2Br7, Cs3Cu2Br7, Cs3Cu2Cl7 and Cs4Cu5Cl9, which have not yet been reported in experiments. This work provides a phase and compositional map that may guide experiments to synthesize more novel inorganic CHPs with diverse properties for potential functional applications.

Key words: first-principles calculationscopper-based halide perovskitestabilityphase diagram



[1]
Sun Y, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006, 440(7086), 908 doi: 10.1038/nature04645
[2]
Luo J, Wang X, Li S, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732), 541 doi: 10.1038/s41586-018-0691-0
[3]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9(9), 687 doi: 10.1038/nnano.2014.149
[4]
Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 2014, 26(27), 4653 doi: 10.1002/adma.201306281
[5]
Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265), 1222 doi: 10.1126/science.aad1818
[6]
Li J, Bade S G R, Shan X, et al. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater, 2015, 27(35), 5196 doi: 10.1002/adma.201502490
[7]
Saidaminov M I, Almutlaq J, Sarmah S, et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Lett, 2016, 1(4), 840 doi: 10.1021/acsenergylett.6b00396
[8]
Cha J H, Han J H, Yin W, et al. Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J Phys Chem Lett, 2017, 8(3), 565 doi: 10.1021/acs.jpclett.6b02763
[9]
De Bastiani M, Dursun I, Zhang Y, et al. Inside perovskites: quantum luminescence from bulk Cs4PbBr6 single crystals. Chem Mater, 2017, 29(17), 7108 doi: 10.1021/acs.chemmater.7b02415
[10]
Cortecchia D, Dewi H A, Yin J, et al. Lead-free MA2CuCl xBr4– x hybrid perovskites. Inorg Chem, 2016, 55(3), 1044 doi: 10.1021/acs.inorgchem.5b01896
[11]
Yang H, Zhang Y, Pan J, et al. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem Mater, 2017, 29(21), 8978 doi: 10.1021/acs.chemmater.7b04161
[12]
Yang J, Zhang P, Wei S H. Band structure engineering of Cs2AgBiBr6 perovskite through order–disordered transition: a first-principle study. J Phys Chem Lett, 2017, 9(1), 31 doi: 10.1021/acs.jpclett.7b02992
[13]
Elseman A M, Shalan A E, Sajid S, et al. Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view. ACS Appl Mater Interfaces, 2018, 10(14), 11699 doi: 10.1021/acsami.8b00495
[14]
Jun T, Sim K, Iimura S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater, 2018, 30(43), 1804547 doi: 10.1002/adma.201804547
[15]
Hull S, Berastegui P. Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides — II: ordered phases within the (AgX) x–(MX)1− x and (CuX)x–(MX)1− x (M = K, Rb and Cs; X = Cl, Br and I) systems. J Solid State Chem, 2004, 177(9), 3156 doi: 10.1016/j.jssc.2004.05.004
[16]
Xiao Z, Du K, Meng W, et al. Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites. Angew Chem Int Ed, 2017, 129, 12275 doi: 10.1002/ange.201705113
[17]
Yang P, Liu G, Liu B, et al. All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. Chem Commun, 2018, 54(82), 11638 doi: 10.1039/C8CC07118G
[18]
Helmholz L, Kruh R F. The crystal structure of cesium chlorocuprate, Cs2CuCl4, and the spectrum of the chlorocuprate ion. J Am Chem Soc, 1952, 74(5), 1176 doi: 10.1021/ja01125a012
[19]
Aguado F, Rodríguez F, Valiente R, et al. Three-dimensional magnetic ordering in the Rb2CuCl4 layer perovskite—structural correlations. J Phys Condens Matter, 2004, 16(12), 1927 doi: 10.1088/0953-8984/16/12/003
[20]
Lim A R, Kim S H. Study of the structural phase transitions in RbCuCl3 and CsCuCl3 single crystals with the electric-magnetic-type interactions using a 87Rb and 133Cs nuclear magnetic resonance spectrometer. J Appl Phys, 2007, 101, 083519 doi: 10.1063/1.2719290
[21]
Kousaka Y, Koyama T, Miyagawa M, et al. Crystal growth of chiral magnetic material in CsCuCl3. J Phys Conf Ser, 2014, 502, 012019 doi: 10.1088/1742-6596/502/1/012019
[22]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/PhysRevB.54.11169
[23]
Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953 doi: 10.1103/PhysRevB.50.17953
[24]
Perdew J P, Burke K, Ernzerh of M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/physrevlett.77.3865
[25]
Persson C, Zhao Y J, Lany S, et al. n-type doping of CuInSe2 and CuGaSe2. Phys Rev B, 2005, 72(3), 035211 doi: 10.1103/PhysRevB.72.035211
[26]
Zhao X G, Yang D, Sun Y, et al. Cu–In halide perovskite solar absorbers. J Am Chem Soc, 2017, 139(19), 6718 doi: 10.1021/jacs.7b02120
Fig. 1.  (Color online) (a) The optimized structure of CHPs with 325-type, they own the isostructural model with space group of Pnma, isolated [Cu2X5]3– anion unit is composed of two types of Cu+ sites, a trigonal site and a tetragonal site. (b) Calculated phase stability regions versus μCu and μX (referring to the chemical potential of Cu and X from that of their elementary substance) from left to right for the X site of I, Br, and Cl element and up to down for Cs and Rb element on A site, respectively. The cyan polygon region represents thermodynamic stability growth region, which is encircled by possible competing phases using colored line (red, blue, violet, and pink). A, Cu, and X atoms are in purple, coral and brown, respectively.

Fig. 2.  (Color online) (a) The structure model of CHPs with 123-type, they all own octahedral structure with the space group of Cmcm (No. 63), composed of edge-sharing [CuX4] tetrahedron 1D chain. (b) Calculated thermodynamic stability regions of ACu2X3 (A = Rb and Cs; X = Cl, Br, and I) CHPs versus μCu and μX (deviation of actual chemical potential of Cu and X from that of their elementary substance). The above from left to right is the CHP for the X site of I, Br, and Cl element, and up to down is for Cs and Rb element on A site, respectively. The cyan polygon region represents thermodynamic stable interval, which is surrounded by competing phases using colored line (red, blue, orange, violet, and pink). A, Cu, and X atoms are in purple, coral and brown, respectively.

Fig. 3.  (Color online) (a) The structure model of CHPs with 213-type, they possess isostructural model with Pnma symmetry, which is composed of 1D [Cu–X] tetrahedron chain with isolated alkali metal cation (Rb+ , Cs+ ). (b) Calculated phase stability regions in cyan polygon of A2CuX3 (A = Cs and Rb; X = I, Br, and Cl) CHPs versus μCu and μX (deviation of actual chemical potential of Cu and X from that of their elementary substance). The cyan polygon region indicates thermodynamic phase stability growth interval, which is encompassed by competing phases with colored line (red, blue, and pink). A, Cu, and X atoms are in purple, coral and brown, respectively.

Fig. 4.  (Color online) (a) The structure model of 459-type CHPs with space group of Pc, they own isolated [Cu5X9]4– anion with three types of Cu+ ions, a tetrahedral site, a trigonal site and a 2-fold coordination site. (b) Calculated thermodynamic stability regions of 459-type CHPs against μCu and μX (deviation of actual chemical potential of Cu and X from that of their elementary substance). The cyan polygon region reveals thermodynamic stable growth interval and each colored line corresponds to one most probable competing phase. A, Cu, and X atoms are in purple, coral and brown, respectively.

Fig. 5.  (Color online) (a) The structure model of 214-type CHPs, most of them possess octahedral space group Pnma with isolated [Cu–X] tetrahedron. But for Rb2CuCl4, it owns Cmca symmetry with 2D [Cu2Cl4]2– layers, induced by [Cu-Cl] octahedron Jahn-Teller distortion. (b) Calculated thermodynamic stability regions of A2CuX4 (A = Rb and Cs; X = Cl, Br, and I) halide perovskites versus μCu and μX (deviation of actual chemical potential of Cu and X from that of their elementary substance). The horizontal and vertical axis is from I to Cl element and from Cs to Rb element, respectively. The cyan polygon region shows thermodynamic stability growth interval, which is encircled by most probable competing phases with colored lines (red, blue, violet, and pink). A, Cu, and X atoms are in purple, coral and brown, respectively.

Fig. 6.  (Color online) (a) The structure model of 113-type CHPs, even though they possess different structures, they all have the same [CuX6] octahedron unit via face- and corner-sharing. (b) Calculated thermodynamic stability regions of ACuX3 (A = Rb and Cs; X = Cl, Br, and I) versus μCu and μX (deviation of actual chemical potential of Cu and X from that of their elementary substance). The horizontal and vertical axis is from I to Cl element and from Cs to Rb element, respectively. The cyan polygon region represents thermodynamic stable growth interval, which is surrounded by most probable competing phases using colored line (red, blue, orange, violet, and pink). A, Cu, and X atoms are in purple, coral and brown, respectively.

Fig. 7.  (Color online) (a) The structure model of 327-type CHPs, they all own tetragonal space group Ccca with isolated [Cu2X7]3– anion composing of elongated [Cu–X] octahedron unit. (b) Calculated thermodynamic stability regions of 327-type CHPs versus μCu and μX (deviation of actual chemical potential of Cu and X from that of their elementary substance). The cyan polygon region represents phase stability growth condition, which is encircled by competing phases using colored line (red, blue, violet, and pink). A, Cu, and X atoms are in purple, coral and brown, respectively.

Table 1.   The Space group of existing CHPs with various types encompassing 325-, 123-, 213-, 459-, 214-, 113-, and 327-type from inorganic crystal structure database (ICSD). ‘√’ and blank grid symbol indicates the existing and non-existing phase in experiment, respectively.

TypeSpace group (No.)Rb Cs
ClBrI ClBrI
325Pnma (62)
123Cmcm (63)
213Pnma (62)
459Pc (7)
214Pnma (62)
Cmca (64)
113P6122 (178)
C2221 (20)
Pbcn (60)
327Ccca (68)
DownLoad: CSV

Table 2.   Calculated decomposition energies together with ODP in the CHPs AlCumXn (A = Rb and Cs; X = Cl, Br, and I; l, m, and n are integers).

CompoundΔHd (meV/atom)Optimal decomposition pathway
325-typeCs3Cu2I525Cs3Cu2I5 → 2CsI + CsCu2I3
Cs3Cu2Br529Cs3Cu2Br5 → 2CsBr + CsCu2Br3
Cs3Cu2Cl533Cs3Cu2Cl5 → Cu + CsCl + Cs2CuCl4
Rb3Cu2I513Rb3Cu2I5 → 2RbI + RbCu2I3
Rb3Cu2Br55Rb3Cu2Br5 → 4/3Rb2CuBr3 + 1/3RbCu2Br3
Rb3Cu2Cl5–2Rb3Cu2Cl5 → 7/5RbCl + 2/5Rb4Cu5Cl9
123-typeCsCu2I30CsCu2I3 → 4/3CuI + 1/3Cs3Cu2I5
CsCu2Br322CsCu2Br3 → 4/3CuBr + 1/3Cs3Cu2Br5
CsCu2Cl324CsCu2Cl3 → 4/3CuCl + 1/3Cu3Cu2Cl5
RbCu2I323RbCu2I3 → RbI + 2CuI
RbCu2Br328RbCu2Br3 → 3/2CuBr + 1/2Rb2CuBr3
RbCu2Cl36RbCu2Cl3 → 3/4CuCl + 1/4Rb4Cu5Cl9
213-typeCs2CuI3–22Cs2CuI3 → 1/2CsI + 1/2Cs3Cu2I5
Cs2CuBr3–16Cs2CuBr3 → 1/2CsBr + 1/2Cs3Cu2Br5
Cs2CuCl3–19Cs2CuCl3 → 1/2CsCl + 1/2Cs3Cu2Cl5
Rb2CuI36Rb2CuI3 → 3/2RbI + 1/2RbCu2I3
Rb2CuBr36Rb2CuBr3 → 3/2RbBr + 1/2RbCu2Br3
Rb2CuCl38Rb2CuCl3 → 1/2Cu + RbCl + 1/2Rb2CuCl4
459-typeCs4Cu5I9–20Cs4Cu5I9 → 3/4Cs3Cu2I5 + 7/4CsCu2I3
Cs4Cu5Br9–9Cs4Cu5Br9 → 3/4Cs3Cu2Br5 + 7/4CsCu2Br3
Cs4Cu5Cl98Cs4Cu5Cl9 → 3/4Cs3Cu2Cl5 + 7/4CsCu2Cl3
Rb4Cu5I9–17Rb4Cu5I9 → 3/2RbI + 5/2RbCu2I3
Rb4Cu5Br9–4Rb4Cu5Br9 → Rb2CuBr3 + 2RbCu2Br3
Rb4Cu5Cl922Rb4Cu5Cl9 → 12/5Cu + 1/5Rb2CuCl3 + 6/5Rb3Cu2Cl7
214-typeCs2CuI4–17Cs2CuI4 → 1/2CsI3 + 1/2Cs3Cu2I5
Cs2CuBr414Cs2CuBr4 → 1/2CsBr + 1/4CsBr3 + 1/2CsCuBr3 + 1/4Cs3Cu2Br5
Cs2CuCl434Cs2CuCl4 → CsCl + CsCuCl3
Rb2CuI4–2Rb2CuI4 → RbI + 1/2RbI3 + 1/2RbCu2I3
Rb2CuBr410Rb2CuBr4 → 2RbBr + CuBr2
Rb2CuCl4–9Rb2CuCl4 → 1/2RbCl + 1/2Rb3Cu2Cl7
113-typeCsCuI3–34CsCuI3 → 1/2CsI3 + 1/2CsCu2I3
CsCuBr319CsCuBr3 → 1/2CuBr2 + 1/2Cs2CuBr4
CsCuCl35CsCuCl3 → 1/2CuCl2 + 1/2Cs2CuCl4
RbCuI3–42RbCuI3 → 1/2RbI3 + 1/2RbCu2I3
RbCuBr321RbCuBr3 → RbBr + CuBr2
RbCuCl3–10RbCuCl3 → 1/3CuCl2 + 1/3Rb3Cu2Cl7
327-typeCs3Cu2I7–31Cs3Cu2I7 → CsI3 + 1/2Cs3Cu2I5 + 1/2CsCu2I3
Cs3Cu2Br79Cs3Cu2Br7 → Cs2CuBr4 + CsCuBr3
Cs3Cu2Cl79Cs3Cu2Cl7 → CsCuCl3 + Cs2CuCl4
Rb3Cu2I7–31Rb3Cu2I7 → RbI + RbI3 + RbCu2I3
Rb3Cu2Br723Rb3Cu2Br7 → 3RbBr + 2CuBr2
Rb3Cu2Cl715Rb3Cu2Cl7 → Rb2CuCl4 + RbCuCl3
DownLoad: CSV

Table 3.   The relative energy per formula unit (eV/f.u.) of 214-type CHPs including Cs2CuI4, Rb2CuI4, and Rb2CuBr4 in the different space group encompassing Pnma and Cmca, which are all non-existing phase in the ICSD.

Space groupCs2CuI4Rb2CuI4Rb2CuBr4
Pnma0.000.000.00
Cmca0.290.330.04
DownLoad: CSV

Table 4.   The relative energy per formula unit (eV/f.u.) of 113-type CHP including CsCuI3, RbCuI3, and RbCuBr3 in the different space group containing C2221, P6122, Pbcn, which are non-existing phase in the ICSD.

Space groupCsCuI3RbCuI3RbCuBr3
C22210.000.000.00
P61220.030.020.10
Pbcn0.150.090.11
DownLoad: CSV

Table 5.   Summary for the stability region and decomposition energy of ODP in the different type CHPs AlBmXn (A = Rb and Cs; B = Cu; X = Cl, Br, and I; l, m, and n are integers; named as lmn-type). For each type CHP, number 1 and 2 represent decomposition energy and stability region, respectively. ‘√’ and ‘×’ symbols indicate ‘stable’ and ‘non-stable’ phase, respectively. Yellow square shows that this type is existing phase from inorganic Crystal Structure Database (ICSD).

ABX325123213459214113327
CsCuI××××××××××
Br××××
Cl××
RbI××××××××
Br××
Cl×××××××
Note: 1: Decomposition energy.
2: Stability region. √: stable. × : Non-stable. : Exist.
DownLoad: CSV
[1]
Sun Y, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006, 440(7086), 908 doi: 10.1038/nature04645
[2]
Luo J, Wang X, Li S, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732), 541 doi: 10.1038/s41586-018-0691-0
[3]
Tan Z K, Moghaddam R S, Lai M L, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol, 2014, 9(9), 687 doi: 10.1038/nnano.2014.149
[4]
Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 2014, 26(27), 4653 doi: 10.1002/adma.201306281
[5]
Cho H, Jeong S H, Park M H, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265), 1222 doi: 10.1126/science.aad1818
[6]
Li J, Bade S G R, Shan X, et al. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater, 2015, 27(35), 5196 doi: 10.1002/adma.201502490
[7]
Saidaminov M I, Almutlaq J, Sarmah S, et al. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Lett, 2016, 1(4), 840 doi: 10.1021/acsenergylett.6b00396
[8]
Cha J H, Han J H, Yin W, et al. Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals. J Phys Chem Lett, 2017, 8(3), 565 doi: 10.1021/acs.jpclett.6b02763
[9]
De Bastiani M, Dursun I, Zhang Y, et al. Inside perovskites: quantum luminescence from bulk Cs4PbBr6 single crystals. Chem Mater, 2017, 29(17), 7108 doi: 10.1021/acs.chemmater.7b02415
[10]
Cortecchia D, Dewi H A, Yin J, et al. Lead-free MA2CuCl xBr4– x hybrid perovskites. Inorg Chem, 2016, 55(3), 1044 doi: 10.1021/acs.inorgchem.5b01896
[11]
Yang H, Zhang Y, Pan J, et al. Room-temperature engineering of all-inorganic perovskite nanocrsytals with different dimensionalities. Chem Mater, 2017, 29(21), 8978 doi: 10.1021/acs.chemmater.7b04161
[12]
Yang J, Zhang P, Wei S H. Band structure engineering of Cs2AgBiBr6 perovskite through order–disordered transition: a first-principle study. J Phys Chem Lett, 2017, 9(1), 31 doi: 10.1021/acs.jpclett.7b02992
[13]
Elseman A M, Shalan A E, Sajid S, et al. Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view. ACS Appl Mater Interfaces, 2018, 10(14), 11699 doi: 10.1021/acsami.8b00495
[14]
Jun T, Sim K, Iimura S, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv Mater, 2018, 30(43), 1804547 doi: 10.1002/adma.201804547
[15]
Hull S, Berastegui P. Crystal structures and ionic conductivities of ternary derivatives of the silver and copper monohalides — II: ordered phases within the (AgX) x–(MX)1− x and (CuX)x–(MX)1− x (M = K, Rb and Cs; X = Cl, Br and I) systems. J Solid State Chem, 2004, 177(9), 3156 doi: 10.1016/j.jssc.2004.05.004
[16]
Xiao Z, Du K, Meng W, et al. Chemical origin of the stability difference between copper(I)- and silver(I)-based halide double perovskites. Angew Chem Int Ed, 2017, 129, 12275 doi: 10.1002/ange.201705113
[17]
Yang P, Liu G, Liu B, et al. All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence. Chem Commun, 2018, 54(82), 11638 doi: 10.1039/C8CC07118G
[18]
Helmholz L, Kruh R F. The crystal structure of cesium chlorocuprate, Cs2CuCl4, and the spectrum of the chlorocuprate ion. J Am Chem Soc, 1952, 74(5), 1176 doi: 10.1021/ja01125a012
[19]
Aguado F, Rodríguez F, Valiente R, et al. Three-dimensional magnetic ordering in the Rb2CuCl4 layer perovskite—structural correlations. J Phys Condens Matter, 2004, 16(12), 1927 doi: 10.1088/0953-8984/16/12/003
[20]
Lim A R, Kim S H. Study of the structural phase transitions in RbCuCl3 and CsCuCl3 single crystals with the electric-magnetic-type interactions using a 87Rb and 133Cs nuclear magnetic resonance spectrometer. J Appl Phys, 2007, 101, 083519 doi: 10.1063/1.2719290
[21]
Kousaka Y, Koyama T, Miyagawa M, et al. Crystal growth of chiral magnetic material in CsCuCl3. J Phys Conf Ser, 2014, 502, 012019 doi: 10.1088/1742-6596/502/1/012019
[22]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/PhysRevB.54.11169
[23]
Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953 doi: 10.1103/PhysRevB.50.17953
[24]
Perdew J P, Burke K, Ernzerh of M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/physrevlett.77.3865
[25]
Persson C, Zhao Y J, Lany S, et al. n-type doping of CuInSe2 and CuGaSe2. Phys Rev B, 2005, 72(3), 035211 doi: 10.1103/PhysRevB.72.035211
[26]
Zhao X G, Yang D, Sun Y, et al. Cu–In halide perovskite solar absorbers. J Am Chem Soc, 2017, 139(19), 6718 doi: 10.1021/jacs.7b02120
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4014 Times PDF downloads: 120 Times Cited by: 0 Times

    History

    Received: 21 February 2020 Revised: 03 March 2020 Online: Accepted Manuscript: 21 April 2020Uncorrected proof: 23 April 2020Published: 13 May 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhongti Sun, Xiwen Chen, Wanjian Yin. Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I)[J]. Journal of Semiconductors, 2020, 41(5): 052201. doi: 10.1088/1674-4926/41/5/052201 Z T Sun, X W Chen, W J Yin, Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I)[J]. J. Semicond., 2020, 41(5): 052201. doi: 10.1088/1674-4926/41/5/052201.Export: BibTex EndNote
      Citation:
      Zhongti Sun, Xiwen Chen, Wanjian Yin. Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I)[J]. Journal of Semiconductors, 2020, 41(5): 052201. doi: 10.1088/1674-4926/41/5/052201

      Z T Sun, X W Chen, W J Yin, Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I)[J]. J. Semicond., 2020, 41(5): 052201. doi: 10.1088/1674-4926/41/5/052201.
      Export: BibTex EndNote

      Comprehensive first-principles studies on phase stability of copper-based halide perovskite derivatives AlCumXn (A = Rb and Cs; X = Cl, Br, and I)

      doi: 10.1088/1674-4926/41/5/052201
      More Information
      • Corresponding author: Email: wjyin@suda.edu.cn
      • Received Date: 2020-02-21
      • Revised Date: 2020-03-03
      • Published Date: 2020-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return