REVIEWS

Physical vapor deposited 2D bismuth for CMOS technology

Hanliu Zhao1, Xinghao Sun1, Zhengrui Zhu1, Wen Zhong1, Dongdong Song1, Weibing Lu2, 3, and Li Tao1, 2,

+ Author Affiliations

 Corresponding author: Weibing Lu, wblu@seu.edu.cn; Li Tao, tao@seu.edu.cn

PDF

Turn off MathJax

Abstract: Two-dimensional (2D) bismuth, bismuthene, is an emerging pnictogen family member that has received increasing research attention in the past few years, which could yield exotic electrical, thermal, and optical properties due to unique band structure. This review provides a holistic view of recent research advances on 2D bismuth material synthesis and device applications in complementary metal oxide semiconductor (CMOS) technology. Firstly, the atomic and band structure of bismuthene is reviewed as the fundamental understanding of its physical properties. Then, it highlights material synthesis of 2D bismuth atomic sheets with emphasis on physical vapor deposition method with accurate layer controllability and process compatibility with CMOS technology. Moreover, it will survey latest applications of 2D bismuth in terms of electronic, optic, thermoelectric, spintronic and magnetic nanodevices. 2D bismuth derivatives (Bi–X, X = Sb, Te, Se) will also be mentioned as a promising strategy to further improve device performance. At last, it concludes with a brief summary on the current challenges and future prospects in 2D bismuth and its derivatives for innovative electronics, sensors and other devices compatible with CMOS techniques.

Key words: bismuthene2D materialsphysical vapor depositionCMOSnanoelectronics



[1]
Zhang S, Xie M, Li F, et al. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew Chem Int Ed, 2016, 55(5), 1666 doi: 10.1002/anie.201507568
[2]
Zhu Z, Tománek D. Semiconducting layered blue phosphorus: A computational study. Phys Rev Lett, 2014, 112(17), 176802 doi: 10.1103/PhysRevLett.112.176802
[3]
Zhang J L, Zhao S, Han C, et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett, 2016, 16(8), 4903 doi: 10.1021/acs.nanolett.6b01459
[4]
Zhang S, Guo S, Chen Z, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev, 2018, 47(3), 982 doi: 10.1039/C7CS00125H
[5]
Tran V, Soklaski R, Liang Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89(23), 235319 doi: 10.1103/PhysRevB.89.235319
[6]
Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5, 4475 doi: 10.1038/ncomms5475
[7]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35
[8]
Beladi-Mousavi S M, Pumera M. 2D-pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chem Soc Rev, 2018, 47(18), 6964 doi: 10.1039/C8CS00425K
[9]
Kim J S, Liu Y, Zhu W, et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep, 2015, 5, 8989 doi: 10.1038/srep08989
[10]
Pizzi G, Gibertini M, Dib E, et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat Commun, 2016, 7, 12585 doi: 10.1038/ncomms12585
[11]
Chia H L, Latiff N M, Gusmao R, et al. Cytotoxicity of shear exfoliated pnictogen (As, Sb, Bi) nanosheets. Chemistry, 2019, 25(9), 2242 doi: 10.1002/chem.201804336
[12]
Zhang S, Yan Z, Li Y, et al. Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions. Angew Chem Int Ed, 2015, 54(10), 3112 doi: 10.1002/anie.201411246
[13]
Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, et al. Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater, 2016, 28(30), 6332 doi: 10.1002/adma.201602128
[14]
Gusmao R, Sofer Z, Bousa D, et al. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew Chem Int Ed, 2017, 56(46), 14417 doi: 10.1002/anie.201706389
[15]
Kim S H, Jin K H, Park J, et al. Topological phase transition and quantum spin Hall edge states of antimony few layers. Sci Rep, 2016, 6(1), 33193 doi: 10.1038/srep33193
[16]
Koroteev Y M, Bihlmayer G, Gayone J E, et al. Strong spin-orbit splitting on bi surfaces. Phys Rev Lett, 2004, 93(4), 046403 doi: 10.1103/PhysRevLett.93.046403
[17]
Reis F, Li G, Dudy L, et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357(6384), 287 doi: 10.1126/science.aai8142
[18]
Hirahara T, Nagao T, Matsuda I, et al. Quantum well states in ultrathin Bi films: Angle-resolved photoemission spectroscopy and first-principles calculations study. Phys Rev B, 2007, 75(3), 035422 doi: 10.1103/PhysRevB.75.035422
[19]
Hirahara T, Nagao T, Matsuda I, et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys Rev Lett, 2006, 97(14), 146803 doi: 10.1103/PhysRevLett.97.146803
[20]
Hofmann P. The surfaces of bismuth: Structural and electronic properties. Prog Surf Sci, 2006, 81(5), 191 doi: 10.1016/j.progsurf.2006.03.001
[21]
Sun J T, Huang H, Wong S L, et al. Energy-gap opening in a Bi110 nanoribbon induced by edge reconstruction. Phys Rev Lett, 2012, 109(24), 246804 doi: 10.1103/PhysRevLett.109.246804
[22]
Hoffman C A, Meyer J R, Bartoli F J, et al. Semimetal-to-semiconductor transition in bismuth thin films. Phys Rev B, 1993, 48(15), 11431 doi: 10.1103/PhysRevB.48.11431
[23]
Ast C R, Hochst H. Fermi surface of Bi(111) measured by photoemission spectroscopy. Phys Rev Lett, 2001, 87(17), 177602 doi: 10.1103/PhysRevLett.87.177602
[24]
Lu D L, Luo S W, Liu S H, et al. Anomalous temperature-dependent Raman scattering of vapordeposited two-dimensional Bi thin films. J Phys Chem C, 2018, 122, 24459 doi: 10.1021/acs.jpcc.8b07957
[25]
Yang Z, Wu Z, Lyu Y, et al. Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition. Info Mat, 2019, 1, 98 doi: 10.1002/inf2.12001
[26]
Partin D L, Heremans J, Morelli D T, et al. Growth and characterization of epitaxial bismuth films. Phys Rev B, 1988, 38(6), 3818 doi: 10.1103/PhysRevB.38.3818
[27]
Liu Y, Allen R E. Electronic structure of the semimetals Bi and Sb. Phys Rev B, 1995, 52(3), 1566 doi: 10.1103/PhysRevB.52.1566
[28]
Li L, Tang C, Xia B, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal, 2019, 9(4), 2902 doi: 10.1021/acscatal.9b00366
[29]
Huang Y, Zhu C, Zhang S, et al. Ultrathin bismuth nanosheets for stable Na-Ion batteries: Clarification of structure and phase transition by in situ observation. Nano Lett, 2019, 19(2), 1118 doi: 10.1021/acs.nanolett.8b04417
[30]
Hao C, Wen F, Xiang J. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv Funct Mater, 2016, 26(12), 2016 doi: 10.1002/adfm.201504187
[31]
Xu Y, Yuan J, Zhang K. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater, 2017, 27(38), 1702211 doi: 10.1002/adfm.201702211
[32]
Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3), 147 doi: 10.1038/nnano.2010.279
[33]
Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5(7), 487 doi: 10.1038/nnano.2010.89
[34]
Norman N C. Chemistry of arsenic, antimony and bismuth. Springer Science & Business Media, 1997
[35]
Wada M, Murakami S, Freimuth F, et al. Localized edge states in twodimensional topological insulators: ultrathin Bi films. Phys Rev B, 2011, 83(12), 121310 doi: 10.1103/PhysRevB.83.121310
[36]
Lu Y, Xu W, Zeng M, et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi (110). Nano Lett, 2015, 15(1), 80 doi: 10.1021/nl502997v
[37]
Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first principles study. Phys Rev Lett, 2011, 107(13), 136805 doi: 10.1103/PhysRevLett.107.136805
[38]
Wu C Y, Han J C, Sun L, et al. Effects of trigonal deformation on electronic structure and thermoelectric properties of bismuth. J Phys: Condens Matter, 2018, 30(28), 285504 doi: 10.1088/1361-648X/aacab9
[39]
Guo Y, Pan F, Ye M, et al. Monolayer bismuthene–metal contacts: A theoretical study. ACS Appl Mater Interfaces, 2017, 9(27), 23128 doi: 10.1021/acsami.7b03833
[40]
Wu C Y, Sun L, Han J C, et al. Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth. RSC Adv, 2019, 9(69), 40670 doi: 10.1039/C9RA08341C
[41]
Yaginuma S, Nagao T, Sadowski J T, et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films. Surf Sci, 2007, 601(17), 3593 doi: 10.1016/j.susc.2007.06.075
[42]
Liu X, Zhang S, Guo S, et al. Advances of 2D bismuth in energy sciences. Chem Soc Rev, 2020, 49(1), 263 doi: 10.1039/C9CS00551J
[43]
Akturk E, Uzengi Akturk O, Ciraci S. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Phys Rev B, 2016, 94(1), 014115 doi: 10.1103/PhysRevB.94.014115
[44]
Lee J, Tian W C, Wang W L, et al. Two-dimensional pnictogen honeycomb lattice: structure, on-site spin-orbit coupling and spin polarization. Sci Rep, 2015, 5, 11512 doi: 10.1038/srep11512
[45]
Liu M Y, Huang Y, Chen Q Y, et al. Strain and electric field tunable electronic structure of buckled bismuthene. RSC Adv, 2017, 7(63), 39546 doi: 10.1039/C7RA05787C
[46]
Pillai S B, Dabhi S D, Jha P K. Hydrogen evolution reaction and electronic structure calculation of two dimensional bismuth and its alloys. Int J Hydrogen Energ, 2018, 43(47), 21649 doi: 10.1016/j.ijhydene.2018.04.009
[47]
Hu T, Hui X, Zhang X, et al. Nanostructured Bi grown on epitaxial graphene/SiC. J Phys Chem Lett, 2018, 9(19), 5679 doi: 10.1021/acs.jpclett.8b02246
[48]
Huang H, Wong S L, Wang Y, et al. Scanning tunneling microscope and photoemission spectroscopy investigations of bismuth on epitaxial graphene on SiC(0001). J Phys Chem C, 2014, 118(43), 24995 doi: 10.1021/jp507072p
[49]
Wang Y, Chen K, Hao H, et al. Engineering ultrafast charge transfer in a bismuthene/perovskite nanohybrid. Nanoscale, 2019, 11(6), 2637 doi: 10.1039/C9NR00058E
[50]
Kumar P, Singh J, Pandey C A. Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets. RSC Adv, 2013, 3(7), 2313 doi: 10.1039/c2ra21907g
[51]
Han N, Wang Y, Yang H, et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun, 2018, 9(1), 1320 doi: 10.1038/s41467-018-03712-z
[52]
Wang L, Wang C, Li F, et al. In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun, 2017, 54(1), 38 doi: 10.1039/C7CC08341F
[53]
Walker E S, Na S R, Jung D, et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett, 2016, 16(11), 6931 doi: 10.1021/acs.nanolett.6b02931
[54]
Zucchetti C, Dau M T, Bottegoni F, et al. Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films. Phy Rev B, 2018, 98(18), 184418 doi: 10.1103/PhysRevB.98.184418
[55]
Meyer D, Jnawali G, Hattab H, et al. Rapid onset of strain relief by massive generation of misfit dislocations in Bi(111)/Si(001) heteroepitaxy. Appl Phys Lett, 2019, 114(8), 081601 doi: 10.1063/1.5088760
[56]
He B C, Tian G, Gou J, et al. Structural and electronic properties of atomically thin bismuth on Au(111). Surf Sci, 2019, 679, 147 doi: 10.1016/j.susc.2018.09.005
[57]
Yang F, Miao L, Wang Z F, et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys Rev Lett, 2012, 109(1), 016801 doi: 10.1103/PhysRevLett.109.016801
[58]
Song F, Wells J W, Jiang Z, et al. Low-temperature growth of bismuth thin films with (111) facet on highly oriented pyrolytic graphite. ACS Appl Mater Interfaces, 2015, 7(16), 8525 doi: 10.1021/acsami.5b00264
[59]
Nagao T, Sadowski J, Saito M, et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7. Phys Rev Lett, 2004, 93(10), 105501 doi: 10.1103/PhysRevLett.93.105501
[60]
Sadowski J T, Nagao T, Yaginuma S, et al. Stability of the quasicubic phase in the initial stage of the growth of bismuth films on Si(111) -7 × 7. J Appl Phys, 2006, 99(1), 014904 doi: 10.1063/1.2150598
[61]
Wang X, Yang X, Shen N, et al. Atomistic insights into the growth of Bi (110) thin films on Cu (111) substrate. Appl Surf Sci, 2019, 481, 1449 doi: 10.1016/j.apsusc.2019.03.251
[62]
Rodil S E, Garcia-Zarco O, Camps E, et al. Preferential orientation in bismuth thin films as a function of growth conditions. Thin Solid Films, 2017, 636, 384 doi: 10.1016/j.tsf.2017.06.048
[63]
Dauscher A, Boffoue M, Lenoir B, et al. Unusual growth of pulsed laser deposited bismuth films on Si(100). Appl Surf Sci, 1999, 138, 188 doi: 10.1016/S0169-4332(98)00420-6
[64]
Wu K S, Chern M Y. Temperature-dependent growth of pulsed-laser-deposited bismuth thin films on glass substrates. Thin Solid Films, 2008, 516(12), 3808 doi: 10.1016/j.tsf.2007.06.138
[65]
Jankowski M, Kaminski D, Vergeer K, et al. Controlling the growth of Bi(110) and Bi(111) films on an insulating substrate. Nanotechnology, 2017, 28(15), 155602 doi: 10.1088/1361-6528/aa61dd
[66]
Yang L, Zheng Y X, Yang S D, et al. Ellipsometric study on temperature dependent optical properties of topological bismuth film. Appl Surf Sci, 2017, 421, 899 doi: 10.1016/j.apsusc.2016.11.006
[67]
Jaina R K, Kaura J, Aroraa S, et al. Effects of oblique angle deposition on structural, electrical and wettability properties of Bi thin films grown by thermal evaporation. Appl Surf Sci, 2019, 463, 45 doi: 10.1016/j.apsusc.2018.08.200
[68]
Kumari L, Lin S J, Lin J H, et al. Effects of deposition temperature and thickness on the structural properties of thermal evaporated bismuth thin films. Appl Surf Sci, 2007, 253(14), 5931 doi: 10.1016/j.apsusc.2006.12.125
[69]
El-Sayed N Z. Physical characteristics of thermally evaporated bismuth thin films. Vacuum, 2006, 80(8), 860 doi: 10.1016/j.vacuum.2005.10.010
[70]
Qin X F, Sui C Y, Di L X. Influence of substrate temperature on the morphology and structure of bismuth thin films deposited by magnetron sputtering. Vacuum, 2019, 166, 316 doi: 10.1016/j.vacuum.2019.05.026
[71]
Duan X, Yang J, Zhu W, et al. Structure and electrical properties of bismuth thin films prepared by flash evaporation method. Mater Lett, 2007, 61(22), 4341 doi: 10.1016/j.matlet.2007.01.098
[72]
Bedoya-Hincapié C M, Roche J, Restrepo-Parra E, et al. Structural and morphological behavior of bismuth thin films grown through DC-magnetron sputtering. Rev chil ing, 2015, 23(1), 92 doi: 10.4067/S0718-33052015000100011
[73]
Stanley S A, Stuttle C, Caruana A J, et al. An investigation of the growth of bismuth whiskers and nanowires during physical vapour deposition. J Phys D, 2012, 45, 435304 doi: 10.1088/0022-3727/45/43/435304
[74]
Kim D H, Lee S H, Kim J K, et al. Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering. Appl Surf Sci, 2006, 252(10), 3525 doi: 10.1016/j.apsusc.2005.05.046
[75]
Takashiri M, Hamada J. Bismuth antimony telluride thin films with unique crystal orientation by two-step method. J Alloy Compd, 2016, 683, 276 doi: 10.1016/j.jallcom.2016.05.058
[76]
Takashiri M, Imai K, Uyama M, et al. Comparison of crystal growth and thermoelectric properties of n-type Bi–Se–Te and p-type Bi–Sb–Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam. J Appl Phys, 2015, 115(21), 214311 doi: 10.1063/1.4881676
[77]
Kawakami N, Lin C L, Kawahara K, et al. Structural evolution of Bi thin films on Au(111) revealed by scanning tunneling microscopy. Phys Rev B, 2017, 96(20), 205402 doi: 10.1103/PhysRevB.96.205402
[78]
International roadmap for devices and systems (More Moore). 2018; Available from: https://irds.ieee.org/images/files/pdf/2017/2017IRDS_MM.pdf.
[79]
Jing X, Illarionov Y, Yalon E, et al. Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv Funct Mater, 2019, 30(18), 1901971 doi: 10.1002/adfm.201901971
[80]
Zhou W, Chen J, Bai P, et al. Two-dimensional pnictogen for field-effect transistors. Research, 2019, 2019, 1046329 doi: 10.34133/2019/1046329
[81]
Jeon J, Jang S K, Jeon S M, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale, 2015, 7(5), 1688 doi: 10.1039/C4NR04532G
[82]
Yang Z, Hao J, Yuan S, et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv Mater, 2015, 27(25), 3748 doi: 10.1002/adma.201500990
[83]
Tao L, Cinquanta E, Chiappe D, et al. Silicene field-effect transistors operating at room temperature. Nat Nanotechnol, 2015, 10(3), 227 doi: 10.1038/nnano.2014.325
[84]
Grazianetti C, Cinquanta E, Tao L, et al. Silicon nanosheets: Crossover between multilayer silicene and diamond-like growth regime. ACS Nano, 2017, 11(3), 3376 doi: 10.1021/acsnano.7b00762
[85]
Bhuvaneswari R, Nagarajan V, Chandiramouli R. Electronic properties of novel bismuthene nanosheets with adsorption studies of G-series nerve agent molecules – a DFT outlook. Phys Lett A, 2019, 383(33), 125975 doi: 10.1016/j.physleta.2019.125975
[86]
Maria J P, Nagarajan V, Chandiramouli R. Benzyl chloride and chlorobenzene adsorption studies on bismuthene nanosheet: A DFT study. J Inorg Organomet Polym Mater, 2019, 30(6), 1888 doi: 10.1007/s10904-019-01352-4
[87]
Snehha P, Nagarajan V, Chandiramouli R. Novel bismuthene nanotubes to detect NH3, NO2 and PH3 gas molecules – A first-principles insight. Chem Phys Lett, 2018, 712, 102 doi: 10.1016/j.cplett.2018.09.068
[88]
Yao J D, Shao J M, Yang G W. Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature. Sci Rep, 2015, 5, 12320 doi: 10.1038/srep12320
[89]
Zhou Q, Lu D, Tang H, et al. Self-powered ultra-broadband and flexible photodetectors based on the bismuth films by vapor deposition. ACS Appl Electron Mater, 2020, 2(5), 1254 doi: 10.1021/acsaelm.0c00058
[90]
Lu L, Wang W, Wu L, et al. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics, 2017, 4(11), 2852 doi: 10.1021/acsphotonics.7b00849
[91]
Chai T, Li X, Feng T, et al. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37), 17617 doi: 10.1039/C8NR03068E
[92]
Hicks L D, Harman T C, Dresselhaus M S. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl Phys Lett, 1993, 63(23), 3230 doi: 10.1557/proc-326-413
[93]
Cheng L, Liu H, Tan X, et al. Thermoelectric properties of a monolayer bismuth. J Phys Chem C, 2014, 118(2), 904 doi: 10.1021/jp411383j
[94]
Guo P, Li X, Chai T, et al. Few-layer bismuthene for robust ultrafast photonics in C-band optical communications. Nanotechnology, 2019, 30(35), 354002 doi: 10.1088/1361-6528/ab2150
[95]
Lyeo H K, Cahill D G. Thermal conductance of interfaces between highly dissimilar materials. Phys Rev B, 2006, 73(14), 144301 doi: 10.1103/PhysRevB.73.144301
[96]
Gallo C F, Chandrasekhar B S, Sutter P H. Transport properties of bismuth single crystals. J Appl Phys, 1963, 34(1), 144 doi: 10.1063/1.1729056
[97]
Liao C N, Kuo S W. Thermoelectric characterization of sputter-deposited Bi/Te bilayer thin films. J Vac Sci Technol A, 2005, 23(3), 559 doi: 10.1116/1.1901671
[98]
Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230), 109 doi: 10.1126/science.aaa4166
[99]
Mishra S K, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J Phys: Condens Matter, 1997, 9(2), 461 doi: 10.1088/0953-8984/9/2/014
[100]
Du Y, Cai K F, Li H, et al. Influence of sintering temperature on the microstructure and thermoelectric properties of n-type Bi2Te3− XSeX nanomaterials. J Electron Mater, 2011, 40(5), 518 doi: 10.1007/s11664-010-1424-9
[101]
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B, 1993, 47(19), 12727 doi: 10.1103/PhysRevB.47.12727
[102]
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B, 1993, 47(24), 16631 doi: 10.1103/PhysRevB.47.16631
[103]
Wu C Y, Sun L, Gong H R, et al. Influence of internal displacement on band structure, phase transition, and thermoelectric properties of bismuth. J Mater Sci, 2019, 54(8), 6347 doi: 10.1007/s10853-018-03311-9
[104]
Xu Y, Gan Z, Zhang S C. Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. Phys Rev Lett, 2014, 112(22), 226801 doi: 10.1103/PhysRevLett.112.226801
[105]
Das V D, Soundararajan N. Size and temperature effects on the Seebeck coefficient of thin bismuth films. Phys Rev B, 1987, 35(12), 5990 doi: 10.1103/PhysRevB.35.5990
[106]
Cho S, DiVenere A, Wong G K, et al. Thermoelectric power of MBE grown Bi thin films and Bi/CdTe superlattices on CdTe substrates. Solid State Commun, 1997, 102(9), 673 doi: 10.1016/S0038-1098(97)00063-X
[107]
Du H, Sun X, Liu X, et al. Surface Landau levels and spin states in bismuth (111) ultrathin films. Nat Commun, 2016, 7, 10814 doi: 10.1038/ncomms10814
[108]
Gou J, Kong L, He X, et al. The effect of moiré superstructures on topological edge states in twisted bismuthene homojunctions. Sci Adv, 2020, 6(23), eaba2773 doi: 10.1126/sciadv.aba2773
[109]
Yang F Y, Liu K, Hong K, et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science, 1999, 284(5418), 1335 doi: 10.1126/science.284.5418.1335
[110]
Wang N, Zhang L, Wang T, et al. Origin of linear magnetoresistance in polycrystalline Bi films. J Appl Phys, 2020, 127(2), 025105 doi: 10.1063/1.5127570
[111]
Wang N, Qi Y. Enhanced transport properties of Bi thin film by preferential current flow pathways in low angle grain boundaries. Vacuum, 2019, 169, 108874 doi: 10.1016/j.vacuum.2019.108874
[112]
Xu Z X, Yan J M, Xu M, et al. Multistate resistance switching in Bi/PMN–PT(111) heterostructures by electric and magnetic field. J Mater Sci-Mater El, 2020, 31(4), 3585 doi: 10.1007/s10854-020-02908-8
[113]
Kong X, Liu Q, Zhang C, et al. Elemental two-dimensional nanosheets beyond graphene. Chem Soc Rev, 2017, 46(8), 2127 doi: 10.1039/C6CS00937A
[114]
Guo S, Zhang Y, Ge Y, et al. 2D V-V binary materials: Status and challenges. Adv Mater, 2019, 31(39), 1902352 doi: 10.1002/adma.201902352
[115]
Ueda Y, Duy Khang N H, Yao K, et al. Epitaxial growth and characterization of Bi1– XSbX spin Hall thin films on GaAs(111)A substrates. Appl Phys Lett, 2017, 110(6), 062401 doi: 10.1063/1.4975492
[116]
Cho S, DiVenere A, Wong G K, et al. Transport properties of Bi1– XSbX alloy thin films grown on CdTe(111)B. Phys Rev B, 1999, 59(16), 10691 doi: 10.1103/PhysRevB.59.10691
[117]
Smith G E, Wolfe R. Thermoelectric properties of bismuth-antimony alloys. J Appl Phys, 1962, 33(3), 841 doi: 10.1063/1.1777178
[118]
Linseis V, Völklein F, Reith H, et al. Thickness and temperature dependent thermoelectric properties of Bi87Sb13 nanofilms measured with a novel measurement platform. Semicond Sci Technol, 2018, 33(8), 085014 doi: 10.1088/1361-6641/aacf39
[119]
Wu C Y, Sun L, Han J C, et al. Band structure, phonon spectrum, and thermoelectric properties of β-BiAs and β-BiSb monolayers. J Mater Chem C, 2020, 8(2), 581 doi: 10.1039/C9TC04842A
[120]
Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys, 2009, 5(6), 438 doi: 10.1038/nphys1270
[121]
Adam A M, Elshafaie A, Mohamed A A, et al. Thermoelectric properties of Te doped bulk Bi2Se3 system. Mater Res Express, 2018, 5(3), 035514 doi: 10.1088/2053-1591/aab5e8
[122]
Ge Z H, Ji Y H, Qiu Y, et al. Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process. Scripta Mater, 2018, 143, 90 doi: 10.1016/j.scriptamat.2017.09.020
[123]
Zahid F, Lake R. Thermoelectric properties of Bi2Te3 atomic quintuple thin films. Appl Phys Lett, 2010, 97(21), 212102 doi: 10.1063/1.3518078
[124]
Guo D L, Hu C G. Ultrahigh thermoelectricity of atomically thick Bi2Se3 single layers: A computational study. Appl Surf Sci, 2014, 321, 525 doi: 10.1016/j.apsusc.2014.09.191
[125]
Sharma A, Srivastava A K, Senguttuvan T D, et al. Robust broad spectral photodetection (UV-NIR) and ultra high responsivity investigated in nanosheets and nanowires of Bi2Te3 under harsh nano-milling conditions. Sci Rep, 2017, 7(1), 17911 doi: 10.1038/s41598-017-18166-4
[126]
Wang F, Li L, Huang W, et al. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv Funct Mater, 2018, 28(33), 1802707 doi: 10.1002/adfm.201802707
Fig. 1.  (Color online) (a) Atomic structure of α phase P (left) and β phase As, Sb, Bi(right). Reproduced with permission from Ref. [4]. Copyright 2018, The Royal Society of Chemistry. (b) Top and side views of Bi(111), which exhibit a buckled honeycomb structure (left), and Bi(110), which exhibit a puckered black-phosphorus style allotrope. Reproduced with permission from Ref. [42]. Copyright 2020, The Royal Society of Chemistry. (c) Bulk Brillouin zone of Bi. Reproduced with permission from Ref. [20]. Copyright 2006, Elsevier Ltd. (d) Schematic drawing of the Bi band structure near the Fermi level at metallic (left) and semiconducting (right) phase. Reproduced with permission from Ref. [19]. Copyright 2006, American Physical Society.

Fig. 2.  (Color online) (a) Band structure of bismuthene is calculated without (up) and with (down) the SOC. Reproduced with permission from Ref. [39]. Copyright 2017, American Chemical Society. (b) Surface states of Bi (111) calculated without (black) and with (red) spin-orbit splitting included. The shaded areas show the projection of the bulk bands obtained without (violet) and with (yellow) SOC and their superposition (brown). (c) Calculated and measured electronic structure on Bi (111) surface. Reproduced with permission from Ref. [16]. Copyright 2004, American Physical Society.

Fig. 3.  (Color online) (a) Sketch and (b) STM image of flat honeycomb bismuthene epitaxy on SiC (0001). Reproduced with permission from Ref. [17]. Copyright 2020, American Association for the Advancement of Science. (c) STM image of ~ 1.2 monolayer Bi on Au (111) and the corresponding line profile (d) along the red line. Reproduced with permission from Ref. [56]. Copyright 2018, Elsevier B.V. (e) Topography of Bi nanoflakes, nanorods and nanoribbons grown on SiC buffer layer (BL) and epitaxy graphene (EG). (f) Atomic structure of Bi nanoribbon on EG. Reproduced with permission from Ref. [47]. Copyright 2018, American Chemical Society. (g) Phase diagram of the strain relief mechanism by interfacial misfit dislocations for epitaxy hetero-films. Reproduced with permission from Ref. [55]. Copyright 2020, AIP Publishing LLC.

Fig. 4.  (Color online) Morphology and X-ray-diffraction patterns (XRD) patterns of 2D bismuth deposited by PLD. (a) SEM micrographs of Bi films deposited by PLD at 185 °C on glass (left) and Si (100) (right). (b) Thickness-dependent XRD patterns of Bi films deposited at 20 °C on Si (100). Reproduced with permission from Ref. [63]. Copyright 1999, Elsevier Science B.V. (c) XRD patterns of the Bi thin films deposited under low ionic energy (~110 eV) and high ionic energy (~270 eV). Reproduced with permission from Ref. [62]. Copyright 2017, Elsevier B.V. (d) High-resolution TEM image of Bi (110) film and (e) Bi (111) film (scale bar = 2 nm), the inset is an enlarged image (scale bar = 1 nm). Reproduced with permission from Ref. [25]. Copyright 1999–2020, John Wiley & Sons, Inc.

Fig. 5.  (Color online) (a) X-ray reflectivity (XRR) curves for a 14 nm Bi (110) film grown at 40 K, measured at 300, 400 and 450 K. At 400 K, the onset of orientation transition towards a Bi (111) film is seen where at 450 K the entire film is transformed. (b) XRR curves for increasing Bi film thickness, grown at RT. Reproduced with permission from Ref. [65]. Copyright 2017, IOP Publishing Ltd. (c) XRD patterns of the bismuth thin films. From sample 1 to sample 3, the filament-substrate distance is decreased and film thickness increased. Reproduced with permission from Ref. [62]. Copyright 2017, Elsevier B.V.

Fig. 6.  (Color online) (a, b) Schematic diagram of the tube employed for the synthesis and atomic force microscopy image of 2D bismuth. Reproduced with permission from Ref. [24]. Copyright 2018, American Chemical Society. (c) Morphology evolution with substrate temperature. (d) The roughness of bismuth thin films prepared at different deposition temperatures. Reproduced with permission from Ref. [70]. Copyright 2019, Elsevier Ltd. (e) Electron concentration and mobility of flash evaporated bismuth thin films. (f) Oscillatory behavior of electrical resistivity. Reproduced with permission from Ref. [71]. Copyright 2007, Elsevier B.V.

Fig. 7.  (Color online) Schematic of 2D bismuth preferred orientation corresponding to different physical vapor deposition.

Fig. 8.  (Color online) Transport properties characterization of PLD grown Bi (111) films. Reproduced with permission from Ref. [25]. Copyright 1999–2020, John Wiley & Sons, Inc. (a) The schematic of FETs based on Bi film. (b) Photograph of Bi FETs with patterned Au electrode (scale bar = 1 cm). The inset shows the optical picture of the electrode pattern of the device (scale bar = 100 μm). (c) Drain current-voltage output characteristics with gate bias at 0 V and (d) Drain current-gate voltage curve of the FET based on 10-nm-thick Bi film.

Fig. 9.  (Color online) (a) Three-dimensional schematic view of the Bi photodetector. (b) Time-dependent switching behavior of the photocurrent. Device area: 0.32 × 0.32 mm2. Power density: 300 mW/cm2. (c) Normalized responsivity as a function of illumination wavelength. Device size: 2 × 1.2 mm2. (d) Operating mechanism of the Bi photodetector. Reproduced with permission from Ref. [88]. Copyright 2015, Springer Nature. (e) Schematic view of the flexible Bi photodetector on the PI substrate. (f) Time-dependent photocurrent in the flexible photodetector excited by 808 nm laser with bias voltages of 2, 5, and 10 V. Reproduced with permission from Ref. [89]. Copyright 2020, American Chemical Society.

Fig. 10.  (Color online) (a−c) Formation process of all-optical switching based on XPM using 532 nm laser with intensity at 5.48 W/cm2. (d) Schematic experimental setup of XPM. Reproduced with permission from Ref. [90]. Copyright 2017, American Chemical Society. (e) Nonlinear transmittance and fitting curve. Reproduced with permission from Ref. [91]. Copyright 2018, The Royal Society of Chemistry. (f) Predicted zT value of bismuth thin films with different quantum wells. Reproduced with permission from Ref. [92]. Copyright 2020, AIP Publishing LLC. (g) Predicted zT value of monolayer bismuthene. Reproduced with permission from Ref. [93]. Copyright 2020, American Chemical Society.

Fig. 11.  (Color online) (a) The second derivative of the Landau-level (SDLL) pattern of the 4.0-nm-thick film as a function of B. Acquisition conditions: –150 mV and 4 nA, modulation of 1.0 mV by root mean square. Reproduced with permission from Ref. [107]. Copyright 2016, Springer Nature. (b) Close-up of ARPES showing a valence-band maximum at the K point with large SOC-induced splitting in a wide momentum range. The sketch in the top-right corner depicts the orientation of the cut (black lines) in the momentum space of the SBZ (blue hexagon). (c) Differential conductivity dI/dV (reflecting the LDOS) at different distances to the edge. Reproduced with permission from Ref. [17]. Copyright 2020, American Association for the Advancement of Science. (d) Illustration of bismuthene/BP-Bi vertical homostructure on HOPG substrate. (e) STM image of a typical bismuthene island on BP-Bi layer. The red grid is superimposed in the right half of the bismuthene island to highlight the moiré superlattice. Scale bars, 40 Å. (f) dI/dV curves taken at three inequivalent sites at the edge and the center part of bismuthene island, respectively (set point: Vs = 0.3 V, I = 500 pA). Reproduced with permission from Ref. [108]. Copyright 2020, American Association for the Advancement of Science.

Fig. 12.  (Color online) (a, b) Calculated temperature dependence of the magnetoresistance ratio for 29 nm and 193 nm bismuth thin films. Reproduced with permission from Ref. [110]. Copyright 2020, AIP Publishing LLC. (c) The temperature dependence of R and MR of bismuth thin film with thickness of 200 nm in 0 and 9 T, and (d) the magnetic field dependence of MR of bismuth thin film with different sample tilt angle θ at 300 K. Reproduced with permission from Ref. [111]. Copyright 2019, Elsevier Ltd.

Table 1.   Physical vapor deposition methods and corresponding parameters.

Physical vapor depositionPressure (Pa)Deposition rateThicknessRef.
Molecular beam epitaxy~10–8<0.02 Å /s1–several monolayers[17, 56]
~4.3–50 nm [5355]
Pulsed laser deposition10–5–10–6~0.1 Å/pulse20–120 nm[63]
0.2–1.4 Å/pulse1–30 nm[25, 64]
Electron beam evaporation10–4–10–50.02 Å/s4–20 nm[65]
~18 Å/s>100 nm[62, 66]
Thermal evaporation~10–41–5 Å/s12–100 nm[24, 68, 69]
>100 nm[67]
Magnetron sputtering10–4–10–51–5 Å/s100–500 nm[70, 73, 74]
600–900 nm[72]
Flash evaporation~10–440–160 nm[71]
DownLoad: CSV
[1]
Zhang S, Xie M, Li F, et al. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew Chem Int Ed, 2016, 55(5), 1666 doi: 10.1002/anie.201507568
[2]
Zhu Z, Tománek D. Semiconducting layered blue phosphorus: A computational study. Phys Rev Lett, 2014, 112(17), 176802 doi: 10.1103/PhysRevLett.112.176802
[3]
Zhang J L, Zhao S, Han C, et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett, 2016, 16(8), 4903 doi: 10.1021/acs.nanolett.6b01459
[4]
Zhang S, Guo S, Chen Z, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev, 2018, 47(3), 982 doi: 10.1039/C7CS00125H
[5]
Tran V, Soklaski R, Liang Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B, 2014, 89(23), 235319 doi: 10.1103/PhysRevB.89.235319
[6]
Qiao J, Kong X, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5, 4475 doi: 10.1038/ncomms5475
[7]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5), 372 doi: 10.1038/nnano.2014.35
[8]
Beladi-Mousavi S M, Pumera M. 2D-pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chem Soc Rev, 2018, 47(18), 6964 doi: 10.1039/C8CS00425K
[9]
Kim J S, Liu Y, Zhu W, et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep, 2015, 5, 8989 doi: 10.1038/srep08989
[10]
Pizzi G, Gibertini M, Dib E, et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat Commun, 2016, 7, 12585 doi: 10.1038/ncomms12585
[11]
Chia H L, Latiff N M, Gusmao R, et al. Cytotoxicity of shear exfoliated pnictogen (As, Sb, Bi) nanosheets. Chemistry, 2019, 25(9), 2242 doi: 10.1002/chem.201804336
[12]
Zhang S, Yan Z, Li Y, et al. Atomically thin arsenene and antimonene: Semimetal–semiconductor and indirect–direct band-gap transitions. Angew Chem Int Ed, 2015, 54(10), 3112 doi: 10.1002/anie.201411246
[13]
Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, et al. Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater, 2016, 28(30), 6332 doi: 10.1002/adma.201602128
[14]
Gusmao R, Sofer Z, Bousa D, et al. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew Chem Int Ed, 2017, 56(46), 14417 doi: 10.1002/anie.201706389
[15]
Kim S H, Jin K H, Park J, et al. Topological phase transition and quantum spin Hall edge states of antimony few layers. Sci Rep, 2016, 6(1), 33193 doi: 10.1038/srep33193
[16]
Koroteev Y M, Bihlmayer G, Gayone J E, et al. Strong spin-orbit splitting on bi surfaces. Phys Rev Lett, 2004, 93(4), 046403 doi: 10.1103/PhysRevLett.93.046403
[17]
Reis F, Li G, Dudy L, et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357(6384), 287 doi: 10.1126/science.aai8142
[18]
Hirahara T, Nagao T, Matsuda I, et al. Quantum well states in ultrathin Bi films: Angle-resolved photoemission spectroscopy and first-principles calculations study. Phys Rev B, 2007, 75(3), 035422 doi: 10.1103/PhysRevB.75.035422
[19]
Hirahara T, Nagao T, Matsuda I, et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films. Phys Rev Lett, 2006, 97(14), 146803 doi: 10.1103/PhysRevLett.97.146803
[20]
Hofmann P. The surfaces of bismuth: Structural and electronic properties. Prog Surf Sci, 2006, 81(5), 191 doi: 10.1016/j.progsurf.2006.03.001
[21]
Sun J T, Huang H, Wong S L, et al. Energy-gap opening in a Bi110 nanoribbon induced by edge reconstruction. Phys Rev Lett, 2012, 109(24), 246804 doi: 10.1103/PhysRevLett.109.246804
[22]
Hoffman C A, Meyer J R, Bartoli F J, et al. Semimetal-to-semiconductor transition in bismuth thin films. Phys Rev B, 1993, 48(15), 11431 doi: 10.1103/PhysRevB.48.11431
[23]
Ast C R, Hochst H. Fermi surface of Bi(111) measured by photoemission spectroscopy. Phys Rev Lett, 2001, 87(17), 177602 doi: 10.1103/PhysRevLett.87.177602
[24]
Lu D L, Luo S W, Liu S H, et al. Anomalous temperature-dependent Raman scattering of vapordeposited two-dimensional Bi thin films. J Phys Chem C, 2018, 122, 24459 doi: 10.1021/acs.jpcc.8b07957
[25]
Yang Z, Wu Z, Lyu Y, et al. Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition. Info Mat, 2019, 1, 98 doi: 10.1002/inf2.12001
[26]
Partin D L, Heremans J, Morelli D T, et al. Growth and characterization of epitaxial bismuth films. Phys Rev B, 1988, 38(6), 3818 doi: 10.1103/PhysRevB.38.3818
[27]
Liu Y, Allen R E. Electronic structure of the semimetals Bi and Sb. Phys Rev B, 1995, 52(3), 1566 doi: 10.1103/PhysRevB.52.1566
[28]
Li L, Tang C, Xia B, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal, 2019, 9(4), 2902 doi: 10.1021/acscatal.9b00366
[29]
Huang Y, Zhu C, Zhang S, et al. Ultrathin bismuth nanosheets for stable Na-Ion batteries: Clarification of structure and phase transition by in situ observation. Nano Lett, 2019, 19(2), 1118 doi: 10.1021/acs.nanolett.8b04417
[30]
Hao C, Wen F, Xiang J. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv Funct Mater, 2016, 26(12), 2016 doi: 10.1002/adfm.201504187
[31]
Xu Y, Yuan J, Zhang K. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater, 2017, 27(38), 1702211 doi: 10.1002/adfm.201702211
[32]
Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3), 147 doi: 10.1038/nnano.2010.279
[33]
Schwierz F. Graphene transistors. Nat Nanotechnol, 2010, 5(7), 487 doi: 10.1038/nnano.2010.89
[34]
Norman N C. Chemistry of arsenic, antimony and bismuth. Springer Science & Business Media, 1997
[35]
Wada M, Murakami S, Freimuth F, et al. Localized edge states in twodimensional topological insulators: ultrathin Bi films. Phys Rev B, 2011, 83(12), 121310 doi: 10.1103/PhysRevB.83.121310
[36]
Lu Y, Xu W, Zeng M, et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi (110). Nano Lett, 2015, 15(1), 80 doi: 10.1021/nl502997v
[37]
Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first principles study. Phys Rev Lett, 2011, 107(13), 136805 doi: 10.1103/PhysRevLett.107.136805
[38]
Wu C Y, Han J C, Sun L, et al. Effects of trigonal deformation on electronic structure and thermoelectric properties of bismuth. J Phys: Condens Matter, 2018, 30(28), 285504 doi: 10.1088/1361-648X/aacab9
[39]
Guo Y, Pan F, Ye M, et al. Monolayer bismuthene–metal contacts: A theoretical study. ACS Appl Mater Interfaces, 2017, 9(27), 23128 doi: 10.1021/acsami.7b03833
[40]
Wu C Y, Sun L, Han J C, et al. Effects of low dimensionality on electronic structure and thermoelectric properties of bismuth. RSC Adv, 2019, 9(69), 40670 doi: 10.1039/C9RA08341C
[41]
Yaginuma S, Nagao T, Sadowski J T, et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films. Surf Sci, 2007, 601(17), 3593 doi: 10.1016/j.susc.2007.06.075
[42]
Liu X, Zhang S, Guo S, et al. Advances of 2D bismuth in energy sciences. Chem Soc Rev, 2020, 49(1), 263 doi: 10.1039/C9CS00551J
[43]
Akturk E, Uzengi Akturk O, Ciraci S. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Phys Rev B, 2016, 94(1), 014115 doi: 10.1103/PhysRevB.94.014115
[44]
Lee J, Tian W C, Wang W L, et al. Two-dimensional pnictogen honeycomb lattice: structure, on-site spin-orbit coupling and spin polarization. Sci Rep, 2015, 5, 11512 doi: 10.1038/srep11512
[45]
Liu M Y, Huang Y, Chen Q Y, et al. Strain and electric field tunable electronic structure of buckled bismuthene. RSC Adv, 2017, 7(63), 39546 doi: 10.1039/C7RA05787C
[46]
Pillai S B, Dabhi S D, Jha P K. Hydrogen evolution reaction and electronic structure calculation of two dimensional bismuth and its alloys. Int J Hydrogen Energ, 2018, 43(47), 21649 doi: 10.1016/j.ijhydene.2018.04.009
[47]
Hu T, Hui X, Zhang X, et al. Nanostructured Bi grown on epitaxial graphene/SiC. J Phys Chem Lett, 2018, 9(19), 5679 doi: 10.1021/acs.jpclett.8b02246
[48]
Huang H, Wong S L, Wang Y, et al. Scanning tunneling microscope and photoemission spectroscopy investigations of bismuth on epitaxial graphene on SiC(0001). J Phys Chem C, 2014, 118(43), 24995 doi: 10.1021/jp507072p
[49]
Wang Y, Chen K, Hao H, et al. Engineering ultrafast charge transfer in a bismuthene/perovskite nanohybrid. Nanoscale, 2019, 11(6), 2637 doi: 10.1039/C9NR00058E
[50]
Kumar P, Singh J, Pandey C A. Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets. RSC Adv, 2013, 3(7), 2313 doi: 10.1039/c2ra21907g
[51]
Han N, Wang Y, Yang H, et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun, 2018, 9(1), 1320 doi: 10.1038/s41467-018-03712-z
[52]
Wang L, Wang C, Li F, et al. In situ synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chem Commun, 2017, 54(1), 38 doi: 10.1039/C7CC08341F
[53]
Walker E S, Na S R, Jung D, et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett, 2016, 16(11), 6931 doi: 10.1021/acs.nanolett.6b02931
[54]
Zucchetti C, Dau M T, Bottegoni F, et al. Tuning spin-charge interconversion with quantum confinement in ultrathin bismuth films. Phy Rev B, 2018, 98(18), 184418 doi: 10.1103/PhysRevB.98.184418
[55]
Meyer D, Jnawali G, Hattab H, et al. Rapid onset of strain relief by massive generation of misfit dislocations in Bi(111)/Si(001) heteroepitaxy. Appl Phys Lett, 2019, 114(8), 081601 doi: 10.1063/1.5088760
[56]
He B C, Tian G, Gou J, et al. Structural and electronic properties of atomically thin bismuth on Au(111). Surf Sci, 2019, 679, 147 doi: 10.1016/j.susc.2018.09.005
[57]
Yang F, Miao L, Wang Z F, et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys Rev Lett, 2012, 109(1), 016801 doi: 10.1103/PhysRevLett.109.016801
[58]
Song F, Wells J W, Jiang Z, et al. Low-temperature growth of bismuth thin films with (111) facet on highly oriented pyrolytic graphite. ACS Appl Mater Interfaces, 2015, 7(16), 8525 doi: 10.1021/acsami.5b00264
[59]
Nagao T, Sadowski J, Saito M, et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7. Phys Rev Lett, 2004, 93(10), 105501 doi: 10.1103/PhysRevLett.93.105501
[60]
Sadowski J T, Nagao T, Yaginuma S, et al. Stability of the quasicubic phase in the initial stage of the growth of bismuth films on Si(111) -7 × 7. J Appl Phys, 2006, 99(1), 014904 doi: 10.1063/1.2150598
[61]
Wang X, Yang X, Shen N, et al. Atomistic insights into the growth of Bi (110) thin films on Cu (111) substrate. Appl Surf Sci, 2019, 481, 1449 doi: 10.1016/j.apsusc.2019.03.251
[62]
Rodil S E, Garcia-Zarco O, Camps E, et al. Preferential orientation in bismuth thin films as a function of growth conditions. Thin Solid Films, 2017, 636, 384 doi: 10.1016/j.tsf.2017.06.048
[63]
Dauscher A, Boffoue M, Lenoir B, et al. Unusual growth of pulsed laser deposited bismuth films on Si(100). Appl Surf Sci, 1999, 138, 188 doi: 10.1016/S0169-4332(98)00420-6
[64]
Wu K S, Chern M Y. Temperature-dependent growth of pulsed-laser-deposited bismuth thin films on glass substrates. Thin Solid Films, 2008, 516(12), 3808 doi: 10.1016/j.tsf.2007.06.138
[65]
Jankowski M, Kaminski D, Vergeer K, et al. Controlling the growth of Bi(110) and Bi(111) films on an insulating substrate. Nanotechnology, 2017, 28(15), 155602 doi: 10.1088/1361-6528/aa61dd
[66]
Yang L, Zheng Y X, Yang S D, et al. Ellipsometric study on temperature dependent optical properties of topological bismuth film. Appl Surf Sci, 2017, 421, 899 doi: 10.1016/j.apsusc.2016.11.006
[67]
Jaina R K, Kaura J, Aroraa S, et al. Effects of oblique angle deposition on structural, electrical and wettability properties of Bi thin films grown by thermal evaporation. Appl Surf Sci, 2019, 463, 45 doi: 10.1016/j.apsusc.2018.08.200
[68]
Kumari L, Lin S J, Lin J H, et al. Effects of deposition temperature and thickness on the structural properties of thermal evaporated bismuth thin films. Appl Surf Sci, 2007, 253(14), 5931 doi: 10.1016/j.apsusc.2006.12.125
[69]
El-Sayed N Z. Physical characteristics of thermally evaporated bismuth thin films. Vacuum, 2006, 80(8), 860 doi: 10.1016/j.vacuum.2005.10.010
[70]
Qin X F, Sui C Y, Di L X. Influence of substrate temperature on the morphology and structure of bismuth thin films deposited by magnetron sputtering. Vacuum, 2019, 166, 316 doi: 10.1016/j.vacuum.2019.05.026
[71]
Duan X, Yang J, Zhu W, et al. Structure and electrical properties of bismuth thin films prepared by flash evaporation method. Mater Lett, 2007, 61(22), 4341 doi: 10.1016/j.matlet.2007.01.098
[72]
Bedoya-Hincapié C M, Roche J, Restrepo-Parra E, et al. Structural and morphological behavior of bismuth thin films grown through DC-magnetron sputtering. Rev chil ing, 2015, 23(1), 92 doi: 10.4067/S0718-33052015000100011
[73]
Stanley S A, Stuttle C, Caruana A J, et al. An investigation of the growth of bismuth whiskers and nanowires during physical vapour deposition. J Phys D, 2012, 45, 435304 doi: 10.1088/0022-3727/45/43/435304
[74]
Kim D H, Lee S H, Kim J K, et al. Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering. Appl Surf Sci, 2006, 252(10), 3525 doi: 10.1016/j.apsusc.2005.05.046
[75]
Takashiri M, Hamada J. Bismuth antimony telluride thin films with unique crystal orientation by two-step method. J Alloy Compd, 2016, 683, 276 doi: 10.1016/j.jallcom.2016.05.058
[76]
Takashiri M, Imai K, Uyama M, et al. Comparison of crystal growth and thermoelectric properties of n-type Bi–Se–Te and p-type Bi–Sb–Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam. J Appl Phys, 2015, 115(21), 214311 doi: 10.1063/1.4881676
[77]
Kawakami N, Lin C L, Kawahara K, et al. Structural evolution of Bi thin films on Au(111) revealed by scanning tunneling microscopy. Phys Rev B, 2017, 96(20), 205402 doi: 10.1103/PhysRevB.96.205402
[78]
International roadmap for devices and systems (More Moore). 2018; Available from: https://irds.ieee.org/images/files/pdf/2017/2017IRDS_MM.pdf.
[79]
Jing X, Illarionov Y, Yalon E, et al. Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv Funct Mater, 2019, 30(18), 1901971 doi: 10.1002/adfm.201901971
[80]
Zhou W, Chen J, Bai P, et al. Two-dimensional pnictogen for field-effect transistors. Research, 2019, 2019, 1046329 doi: 10.34133/2019/1046329
[81]
Jeon J, Jang S K, Jeon S M, et al. Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale, 2015, 7(5), 1688 doi: 10.1039/C4NR04532G
[82]
Yang Z, Hao J, Yuan S, et al. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv Mater, 2015, 27(25), 3748 doi: 10.1002/adma.201500990
[83]
Tao L, Cinquanta E, Chiappe D, et al. Silicene field-effect transistors operating at room temperature. Nat Nanotechnol, 2015, 10(3), 227 doi: 10.1038/nnano.2014.325
[84]
Grazianetti C, Cinquanta E, Tao L, et al. Silicon nanosheets: Crossover between multilayer silicene and diamond-like growth regime. ACS Nano, 2017, 11(3), 3376 doi: 10.1021/acsnano.7b00762
[85]
Bhuvaneswari R, Nagarajan V, Chandiramouli R. Electronic properties of novel bismuthene nanosheets with adsorption studies of G-series nerve agent molecules – a DFT outlook. Phys Lett A, 2019, 383(33), 125975 doi: 10.1016/j.physleta.2019.125975
[86]
Maria J P, Nagarajan V, Chandiramouli R. Benzyl chloride and chlorobenzene adsorption studies on bismuthene nanosheet: A DFT study. J Inorg Organomet Polym Mater, 2019, 30(6), 1888 doi: 10.1007/s10904-019-01352-4
[87]
Snehha P, Nagarajan V, Chandiramouli R. Novel bismuthene nanotubes to detect NH3, NO2 and PH3 gas molecules – A first-principles insight. Chem Phys Lett, 2018, 712, 102 doi: 10.1016/j.cplett.2018.09.068
[88]
Yao J D, Shao J M, Yang G W. Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature. Sci Rep, 2015, 5, 12320 doi: 10.1038/srep12320
[89]
Zhou Q, Lu D, Tang H, et al. Self-powered ultra-broadband and flexible photodetectors based on the bismuth films by vapor deposition. ACS Appl Electron Mater, 2020, 2(5), 1254 doi: 10.1021/acsaelm.0c00058
[90]
Lu L, Wang W, Wu L, et al. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics, 2017, 4(11), 2852 doi: 10.1021/acsphotonics.7b00849
[91]
Chai T, Li X, Feng T, et al. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37), 17617 doi: 10.1039/C8NR03068E
[92]
Hicks L D, Harman T C, Dresselhaus M S. Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl Phys Lett, 1993, 63(23), 3230 doi: 10.1557/proc-326-413
[93]
Cheng L, Liu H, Tan X, et al. Thermoelectric properties of a monolayer bismuth. J Phys Chem C, 2014, 118(2), 904 doi: 10.1021/jp411383j
[94]
Guo P, Li X, Chai T, et al. Few-layer bismuthene for robust ultrafast photonics in C-band optical communications. Nanotechnology, 2019, 30(35), 354002 doi: 10.1088/1361-6528/ab2150
[95]
Lyeo H K, Cahill D G. Thermal conductance of interfaces between highly dissimilar materials. Phys Rev B, 2006, 73(14), 144301 doi: 10.1103/PhysRevB.73.144301
[96]
Gallo C F, Chandrasekhar B S, Sutter P H. Transport properties of bismuth single crystals. J Appl Phys, 1963, 34(1), 144 doi: 10.1063/1.1729056
[97]
Liao C N, Kuo S W. Thermoelectric characterization of sputter-deposited Bi/Te bilayer thin films. J Vac Sci Technol A, 2005, 23(3), 559 doi: 10.1116/1.1901671
[98]
Kim S I, Lee K H, Mun H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230), 109 doi: 10.1126/science.aaa4166
[99]
Mishra S K, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J Phys: Condens Matter, 1997, 9(2), 461 doi: 10.1088/0953-8984/9/2/014
[100]
Du Y, Cai K F, Li H, et al. Influence of sintering temperature on the microstructure and thermoelectric properties of n-type Bi2Te3− XSeX nanomaterials. J Electron Mater, 2011, 40(5), 518 doi: 10.1007/s11664-010-1424-9
[101]
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B, 1993, 47(19), 12727 doi: 10.1103/PhysRevB.47.12727
[102]
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B, 1993, 47(24), 16631 doi: 10.1103/PhysRevB.47.16631
[103]
Wu C Y, Sun L, Gong H R, et al. Influence of internal displacement on band structure, phase transition, and thermoelectric properties of bismuth. J Mater Sci, 2019, 54(8), 6347 doi: 10.1007/s10853-018-03311-9
[104]
Xu Y, Gan Z, Zhang S C. Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. Phys Rev Lett, 2014, 112(22), 226801 doi: 10.1103/PhysRevLett.112.226801
[105]
Das V D, Soundararajan N. Size and temperature effects on the Seebeck coefficient of thin bismuth films. Phys Rev B, 1987, 35(12), 5990 doi: 10.1103/PhysRevB.35.5990
[106]
Cho S, DiVenere A, Wong G K, et al. Thermoelectric power of MBE grown Bi thin films and Bi/CdTe superlattices on CdTe substrates. Solid State Commun, 1997, 102(9), 673 doi: 10.1016/S0038-1098(97)00063-X
[107]
Du H, Sun X, Liu X, et al. Surface Landau levels and spin states in bismuth (111) ultrathin films. Nat Commun, 2016, 7, 10814 doi: 10.1038/ncomms10814
[108]
Gou J, Kong L, He X, et al. The effect of moiré superstructures on topological edge states in twisted bismuthene homojunctions. Sci Adv, 2020, 6(23), eaba2773 doi: 10.1126/sciadv.aba2773
[109]
Yang F Y, Liu K, Hong K, et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science, 1999, 284(5418), 1335 doi: 10.1126/science.284.5418.1335
[110]
Wang N, Zhang L, Wang T, et al. Origin of linear magnetoresistance in polycrystalline Bi films. J Appl Phys, 2020, 127(2), 025105 doi: 10.1063/1.5127570
[111]
Wang N, Qi Y. Enhanced transport properties of Bi thin film by preferential current flow pathways in low angle grain boundaries. Vacuum, 2019, 169, 108874 doi: 10.1016/j.vacuum.2019.108874
[112]
Xu Z X, Yan J M, Xu M, et al. Multistate resistance switching in Bi/PMN–PT(111) heterostructures by electric and magnetic field. J Mater Sci-Mater El, 2020, 31(4), 3585 doi: 10.1007/s10854-020-02908-8
[113]
Kong X, Liu Q, Zhang C, et al. Elemental two-dimensional nanosheets beyond graphene. Chem Soc Rev, 2017, 46(8), 2127 doi: 10.1039/C6CS00937A
[114]
Guo S, Zhang Y, Ge Y, et al. 2D V-V binary materials: Status and challenges. Adv Mater, 2019, 31(39), 1902352 doi: 10.1002/adma.201902352
[115]
Ueda Y, Duy Khang N H, Yao K, et al. Epitaxial growth and characterization of Bi1– XSbX spin Hall thin films on GaAs(111)A substrates. Appl Phys Lett, 2017, 110(6), 062401 doi: 10.1063/1.4975492
[116]
Cho S, DiVenere A, Wong G K, et al. Transport properties of Bi1– XSbX alloy thin films grown on CdTe(111)B. Phys Rev B, 1999, 59(16), 10691 doi: 10.1103/PhysRevB.59.10691
[117]
Smith G E, Wolfe R. Thermoelectric properties of bismuth-antimony alloys. J Appl Phys, 1962, 33(3), 841 doi: 10.1063/1.1777178
[118]
Linseis V, Völklein F, Reith H, et al. Thickness and temperature dependent thermoelectric properties of Bi87Sb13 nanofilms measured with a novel measurement platform. Semicond Sci Technol, 2018, 33(8), 085014 doi: 10.1088/1361-6641/aacf39
[119]
Wu C Y, Sun L, Han J C, et al. Band structure, phonon spectrum, and thermoelectric properties of β-BiAs and β-BiSb monolayers. J Mater Chem C, 2020, 8(2), 581 doi: 10.1039/C9TC04842A
[120]
Zhang H J, Liu C X, Qi X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys, 2009, 5(6), 438 doi: 10.1038/nphys1270
[121]
Adam A M, Elshafaie A, Mohamed A A, et al. Thermoelectric properties of Te doped bulk Bi2Se3 system. Mater Res Express, 2018, 5(3), 035514 doi: 10.1088/2053-1591/aab5e8
[122]
Ge Z H, Ji Y H, Qiu Y, et al. Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process. Scripta Mater, 2018, 143, 90 doi: 10.1016/j.scriptamat.2017.09.020
[123]
Zahid F, Lake R. Thermoelectric properties of Bi2Te3 atomic quintuple thin films. Appl Phys Lett, 2010, 97(21), 212102 doi: 10.1063/1.3518078
[124]
Guo D L, Hu C G. Ultrahigh thermoelectricity of atomically thick Bi2Se3 single layers: A computational study. Appl Surf Sci, 2014, 321, 525 doi: 10.1016/j.apsusc.2014.09.191
[125]
Sharma A, Srivastava A K, Senguttuvan T D, et al. Robust broad spectral photodetection (UV-NIR) and ultra high responsivity investigated in nanosheets and nanowires of Bi2Te3 under harsh nano-milling conditions. Sci Rep, 2017, 7(1), 17911 doi: 10.1038/s41598-017-18166-4
[126]
Wang F, Li L, Huang W, et al. Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv Funct Mater, 2018, 28(33), 1802707 doi: 10.1002/adfm.201802707
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4573 Times PDF downloads: 221 Times Cited by: 0 Times

    History

    Received: 06 June 2020 Revised: 06 July 2020 Online: Accepted Manuscript: 13 July 2020Uncorrected proof: 16 July 2020Published: 04 August 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hanliu Zhao, Xinghao Sun, Zhengrui Zhu, Wen Zhong, Dongdong Song, Weibing Lu, Li Tao. Physical vapor deposited 2D bismuth for CMOS technology[J]. Journal of Semiconductors, 2020, 41(8): 081001. doi: 10.1088/1674-4926/41/8/081001 H L Zhao, X H Sun, Z R Zhu, W Zhong, D D Song, W B Lu, L Tao, Physical vapor deposited 2D bismuth for CMOS technology[J]. J. Semicond., 2020, 41(8): 081001. doi: 10.1088/1674-4926/41/8/081001.Export: BibTex EndNote
      Citation:
      Hanliu Zhao, Xinghao Sun, Zhengrui Zhu, Wen Zhong, Dongdong Song, Weibing Lu, Li Tao. Physical vapor deposited 2D bismuth for CMOS technology[J]. Journal of Semiconductors, 2020, 41(8): 081001. doi: 10.1088/1674-4926/41/8/081001

      H L Zhao, X H Sun, Z R Zhu, W Zhong, D D Song, W B Lu, L Tao, Physical vapor deposited 2D bismuth for CMOS technology[J]. J. Semicond., 2020, 41(8): 081001. doi: 10.1088/1674-4926/41/8/081001.
      Export: BibTex EndNote

      Physical vapor deposited 2D bismuth for CMOS technology

      doi: 10.1088/1674-4926/41/8/081001
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return