• [1]

    Zhang B, Zhang W T, Qiao M, et al. Theory and optimization of the power super junction device. Sci Sin-Phys Mech Astron, 2016, 46: 107302 (in Chinese)

  • [2]

    Zhang B, Luo X R, Li Z J. Electric field optimization technology for power semiconductor devices. Chengdu: UESTC Press, 2016 (in Chinese)

  • [3]

    Chen X B. Superjunction device. Power Electron, 2008, 42(12): 2 (in Chinese)

  • [4]

    Chen X B. Semiconductor power devices with alternating conductivity type high-voltage breakdown region. US Patient, US5216275, 1993

  • [5]

    Chen X B, Mawby P A, Board K, et al. Theory of a novel voltage-sustaining layer for power devices. Microelectron J, 1998, 29(12): 1005

  • [6]

    Coe D J. High voltage semiconductor device. USA Patent, US4754310, 1988

  • [7]

    Tihanyi J. Power MOSFET. USA Patent, US5438215, 1995

  • [8]

    Fujihira T. Theory of semiconductor superjunction devices. Jpn J Appl Phys, 1997, 36(10): 6254

  • [9]

    Deboy G, Marz M, Stengl J P, et al. A new generation of high voltage MOSFETs breaks the limit line of silicon. IEEE International Electron Devices Meeting (IEDM), 1998: 683

  • [10]

    Lorenz L, Deboy G, Knapp A, et al. CooLMOSTM: a new milestone in high voltage power MOS. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 1999: 3

  • [11]

    Zhang W T, Zhang B. Theory of superjunction with NFD and FD modes based on normalized breakdown voltage. IEEE Trans Electron Devices, 2015, 62(12): 4114

  • [12]

    Kawashima Y, Inomata H, Murakawa K, et al. Narrow-pitch n-channel superjunction UMOSFET for 40–60 V automotive application. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2010: 329

  • [13]

    Yamauchi S, Shibata T, Nogami S, et al. 200 V super junction MOSFET fabricated by high aspect ratio trench filling. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2006: 1

  • [14]

    Saito W, Omura I, Aida S, et al. A 15.5 mΩ·cm2 680 V superjunction MOSFET reduced on-resistance by lateral pitch narrowing. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2006: 1

  • [15]

    Sakakibara J, Noda Y, Shibata T, et al. 600 V-class super junction MOSFET with high aspect ratio P/N columns structure. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2008: 299

  • [16]

    Rutter P, Peake S T. Low voltage trenchMOS combining low specific RDS (on) and QG FOM. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2010: 325

  • [17]

    Okubo H, Kobayashi K, Kawashima Y. Ultralow on-resistance 30–40 V UMOSFET by 2-D scaling of ion-implanted superjunction structure. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2013: 87

  • [18]

    Miura Y, Ninomiya H, Kobayashi K. High performance superjunction UMOSFETs with split P-columns fabricated by multi-ion-implantations. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2005: 39

  • [19]

    Ninomiya H, Miura Y, Kobayashi K. Ultra-low on-resistance 60–100 V superjunction UMOSFETs fabricated by multiple ion-implantation. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2004: 177

  • [20]

    Dalen R, Rochefort C. Electrical characterisation of vertical vapor phase doped (VPD) RESURF MOSFETs. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2004: 451

  • [21]

    Dalen R, Rochefort C. Vertical multi-RESURF MOSFETs exhibiting record low specific resistance. IEEE International Electron Devices Meeting (IEDM), 2003: 31.1.1

  • [22]

    Rochefort C, Dalen R. Vertical RESURF diodes manufactured by deep-trench etch and vapor-phase doping. IEEE Electron Device Lett, 2004, 25(2): 73

  • [23]

    Hu C M. Optimum doping profile for minimum ohmic resistance and high-breakdown voltage. IEEE Trans Electron Devices, 1979, 26(3): 243

  • [24]

    Gan K P, Yang X, Liang Y C, et al. A simple technology for superjunction device fabrication: polyflanked VDMOSFET. IEEE Electron Device Letters, 2002, 23(10): 627

  • [25]

    Hattori Y, Nakashima K, Kuwahara M, et al. Design of a 200 V super junction MOSFET with n-buffer regions and its fabrication by trench filling. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2004: 189

  • [26]

    Kurosaki T, Shishido H, Kitada M, et al. 200 V multi RESURF trench MOSFET (MR-TMOS). IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2003: 211

  • [27]

    Nitta T, Minato T, Yano M, et al. Experimental results and simulation analysis of 250 V super trench power MOSFET (STM). IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2000: 77

  • [28]

    Rochefort C, Dalen R. A scalable trench etch based process for high voltage vertical RESURF MOSFETs. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2005: 35

  • [29]

    Iwamoto S, Takahashi K, Kuribayashi H, et al. Above 500 V class superjunction MOSFETs fabricated by deep trench etching and epitaxial growth. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2005: 31

  • [30]

    Rüb M, Bär M, Deboy G, et al. 550 V superjunction 3.9 Ω·mm2 transistor formed by 25 MeV masked boron implantation. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2004: 455

  • [31]

    Lee SC, Oh K H, Kim S S, et al. 650 V superjunction MOSFET using universal charge balance concept through drift region. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2014: 83

  • [32]

    Onishi Y, Iwamoto S, Sato T, et al. 24 mΩ·cm2 680 V silicon superjunction MOSFET. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2002: 241

  • [33]

    Saito W, Omura L, Aida S, et al. A 20 mΩ·cm2 600 V-class superjunction MOSFET. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2004: 459

  • [34]

    Takahashi K, Kuribayashi H, Kawashima T, et al. 20 mΩ·cm2 660 V super junction MOSFETs fabricated by deep trench etching and epitaxial growth. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2006: 1

  • [35]

    Moens P, Bogman F, Ziad H, et al. UltiMOS: a local charge-balanced trench-based 600 V super-junction device. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2011: 304

  • [36]

    Sugi A, Takei M, Takahashi K, et al. Super junction MOSFETs above 600 V with parallel gate structure fabricated by deep trench etching and epitaxial growth. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2008: 165

  • [37]

    Tamaki T, Nakazawa Y, Kanai H, et al. Vertical charge imbalance effect on 600 V-class trench-filling superjunction power MOSFETs. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2011: 308

  • [38]

    Kagata Y, Oda Y, Hayashi K, et al. 600 V-class trench-filling super junction power MOSFETs for low loss and low leakage current. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2013: 225

  • [39]

    Jung E S, Kyoung S S, Kang E G. Design and fabrication of super junction MOSFET based on trench filling and bottom implantation process. J Electr Eng Technol, 2014, 9(3): 964

  • [40]

    Shenoy P M, Bhalla A, Dolny G. Analysis of the effect of charge imbalance on the static and dynamic characteristics of the super junction MOSFET. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 1999: 99

  • [41]

    Chen X B, Sin J K O. Optimization of the specific on-resistance of the COOLMOSTM. IEEE Trans Electron Devices, 2001, 48(2): 344

  • [42]

    Buzzo M, Rub M, Ciappa M, et al. Characterization of 2D dopant profiles for the design of proton implanted high-voltage super junction. International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 2005: 285

  • [43]

    Saito W, Omura I, Aida S, et al. A 15.5 mΩ·cm2 680 V superjunction MOSFET reduced on-resistance by lateral pitch narrowing. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2006: 1

  • [44]

    Onishi Y, Iwamoto S, Sato T, et al. 24 mΩ·cm2 680 V silicon superjunction MOSFET. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2002: 241

  • [45]

    Saito W, Omura L, Aida S, et al. A 20 mΩ·cm2 600 V-class superjunction MOSFET. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2004: 459

  • [46]

    Minato T, Nitta T, Uenisi A, et al. Which is cooler, trench or multi-epitaxy cutting edge approach for the silicon limit by the super trench power MOS-FET (STM). IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2000: 73

  • [47]

    Saito W, Omura I, Aida S, et al. Over 1000 V semi-superjunction MOSFET with ultra-low on-resistance blow the Si-limit. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2005: 27

  • [48]

    Saito W, Omura I, Aida S, et al. Semisuperjunction MOSFETs: new design concept for lower on-resistance and softer reverse-recovery body diode. IEEE Trans Electron Devices, 2003, 50(8): 1801

  • [49]

    Chen W J, Zhang B, Li Z J, et al. Optimum design of PSJ for high-voltage devices. Chin J Electron, 2006, 27(6): 1089

  • [50]

    Antoniou M, Udrea F, Bauer F. The superjunction insulated gate bipolar transistor optimization and modeling. IEEE Trans Electron Devices, 2010, 57(3): 594

  • [51]

    Cheng X, Liu X M, Sin J K, et al. Improving the CoolMOSTM body-diode switching performance with integrated Schottky contacts. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2003: 304

  • [52]

    Wang Y, Xu L K, Miao Z K. A superjunction schottky barrier diode with trench metal–oxide–semiconductor structure. IEEE Electron Device Lett, 2012, 33(12): 1744

  • [53]

    Chen Y , Liang Y C, Samudra G S. Design of gradient oxide-bypassed superjunction power MOSFET devices. IEEE Trans Power Electronics, 2007, 22(4): 1303

  • [54]

    Chen X B. Super-junction voltage sustaining layer with alternating semiconductor and high-k dielectric regions.US Patient, US7230310, 2007

  • [55]

    Luo X R, Jiang Y H, Zhou K, et al. Ultralow specific on-resistance superjunction vertical DMOS with high-k dielectric pillar. IEEE Electron Device Lett, 2012, 33(7): 1042

  • [56]

    Zhang B, Wang W L, Chen W J, et al. High-voltage LDMOS with charge-balanced surface low on-resistance path layer. IEEE Electron Device Lett, 2009, 30(8): 849

  • [57]

    Zhang B, Chen L, Wu J, et al. SLOP-LDMOS – a novel super-junction concept LDMOS and its experimental demonstration. IEEE International Conference on Communications, Circuits and Systems, 2005: 1402

  • [58]

    Zhang B, Zhang W T, Li Z H, et al. Equivalent substrate model for lateral super junction device. IEEE Trans Electron Devices, 2014, 61(2): 525

  • [59]

    Nassif-khalil S G, Salama C A T. Super junction LDMOST in silicon-on-sapphire technology (SJ-LDMOST). IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2002: 81

  • [60]

    Ng R, Udrea F, Sheng K, et al. Lateral unbalanced super junction (USJ)/3D-RESURF for high breakdown voltage on SOI. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2001: 395

  • [61]

    Nassif-khalil S G, Li H Z, Salama C A T. SJ/RESURF LDMOST. IEEE Trans Electron Devices, 2004, 51(7): 1185

  • [62]

    Park I Y, Salama C A T. CMOS compatible super junction LDMOST with N-buffer layer. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2005: 163

  • [63]

    Chen W J, Zhang B, Li Z H. SJ-LDMOS with high breakdown voltage and ultra-low on-resistance. Electronics Letters, 2006, 42(22): 1314

  • [64]

    Duan B X, Cao Z, Yuan X N, et al. New superjunction LDMOS breaking silicon limit by electric field modulation of buffered step doping. IEEE Electron Device Letters, 2015, 36(1): 47

  • [65]

    Chen W J, Zhang B, Li Z J. Optimization of super-junction SOI-LDMOS with a step doping surface-implanted layer. Semicondr Sci Technol, 2007, 22(5): 464

  • [66]

    Wang W L, Zhang B, Li Z J, et al. High-voltage SOI SJ-LDMOS with a nondepletion compensation layer. IEEE Electron Device Lett, 2009, 30(1): 68

  • [67]

    Chen X B. Theory of the switching response of CBMOST. Chin J Electron, 2001, 10: 1

  • [68]

    Zhang W T, Zhang B, Qiao M, et al. Optimization of lateral superjunction based on the minimum specific ON-resistance. IEEE Trans Electron Devices, 2016, 63(5): 1984

  • [69]

    Strollo A G M, Napoli E. Optimal ON-resistance versus breakdown voltage tradeoff in superjunction power devices: a novel analytical model. IEEE Trans Electron Devices, 2001, 48(9): 2161

  • [70]

    Zhang W T, Zhang B, Qiao M, et al. Optimization and new structure of superjunction with isolator layer. IEEE Trans Electron Devices, 2017, 64(1): 217

  • [71]

    Zhang W T, Zhang B, Qiao M, et al. The RON,min of balanced symmetric vertical super junction based on R-well model. IEEE Trans Electron Devices, 2017, 64(1): 224

  • [72]

    Huang H M, Chen X B. Optimization of specific on-resistance of balanced symmetric superjunction MOSFETs based on a better approximation of ionization integral. IEEE Trans Electron Devices, 2012, 59(10): 2742

  • [73]

    Disney D, Dolny G. JFET depletion in superjunction devices. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2008: 160

  • [74]

    Duan B X, Yang Y T, Zhang B. New superjunction LDMOS with N-type charges’ compensation layer. IEEE Electron Device Lett, 2009, 30(3): 305

  • [75]

    Duan B X, Cao Z, Yuan S, et al. Complete 3D-reduced surface field superjunction lateral double-diffused MOSFET breaking silicon limit. IEEE Electron Device Lett, 2015, 36(12): 1348

  • [76]

    Honarkhah S, Nassif-Khalil S, Salama C A T. Back-etched super-junction LDMOST on SOI. Solid-State Device Research Conference, 2004: 117

  • [77]

    Lin M J, Lee T H, Chang F L, et al. Lateral superjunction reduced surface field structure for the optimization of breakdown and conduction characteristics in a high-voltage lateral double diffused metal oxide field effect transistor. Jpn J Appl Phys, 2003, 42(12): 7227

  • [78]

    Qiao M, Hu X, Wen H J, et al. A novel substrate-assisted RESURF technology for small curvature radius junction. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2011: 16

  • [79]

    Qiao M, Wu W J, Zhang B, et al. A novel substrate termination technology for lateral double-diffused MOSFET based on curved junction extension. Semicond Sci Technol, 2014, 29(4): 045002

  • [80]

    Zhang W T, Zhan Z Y, Yu Y, et al. Novel superjunction LDMOS (> 950 V) with a thin layer SOI. IEEE Electron Device Lett, 2017, 38: 1555

  • [81]

    Kosugi R, Sakuma Y, Kojima K, et al. Development of SiC super-junction (SJ) device bydeep trench-filling epitaxial growth. Mater Sci Forum, 2013, 740-742: 785

  • [82]

    Zhong X, Wang B, Sheng K. Design and experimental demonstration of 1.35 kV SiC super junction Schottky diode. IEEE International Symposium on Power Semiconductor Devices & IC's (ISPSD), 2016: 231

  • [83]

    Li Z, Chow T P. Design and simulation of 5–20-kV GaN enhancement-mode vertical superjunction HEMT. IEEE Trans Electron Devices, 2013, 60(10): 3230

  • [84]

    Ishida H, Shibata D, Matsuo H, et al. GaN-based natural super junction diodes with multichannel structures. Proc Int Electron Devices Meeting (IEDM), 2008: 1