J. Semicond. > Volume 32 > Issue 8 > Article Number: 083003

Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure

Bi Yang , Wang Xiaoliang , Xiao Hongling , Wang Cuimei , Yang Cuibai , Peng Enchao , Lin Defeng , Feng Chun and Jiang Lijuan

+ Author Affilications + Find other works by these authors

PDF

Abstract: Electrical properties of InxAl1-xN/AlN/GaN structure are investigated by solving coupled Schrödinger and Poisson equations self-consistently. The variations in internal polarizations in InxAl1-xN with indium contents are studied and the total polarization is zero when the indium content is 0.41. Our calculations show that the two-dimensional electron gas (2DEG) sheet density will decrease with increasing indium content. There is a critical thickness for AlN. The 2DEG sheet density will increase with InxAl1-xN thickness when the AlN thickness is less than the critical value. However, once the AlN thickness becomes greater than the critical value, the 2DEG sheet density will decrease with increasing barrier thickness. The critical value of AlN is 2.8 nm for the lattice-matched In0.18Al0.82N/AlN/GaN structure. Our calculations also show that the critical value decreases with increasing indium content.

Key words: GaNInAlNHEMT2DEGpolarization

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

Chen Zhigang, Zhang Yang, Luo Weijun, Zhang Renping, Yang Fuhua, Wang Xiaoliang, Li Jinmin. A High Performance AlGaN/GaN HEMT with a New Method for T-Gate Layout Design. J. Semicond., 2008, 29(9): 1654.

Zeng Qingming, Li Xianjie, Zhou Zhou, Wang Yong, Wang Xiaoliang. Investigation of Undoped AlGaN/GaN Microwave Power HEMT. J. Semicond., 2005, 26(13): 151.

J. Panda, K. Jena, R. Swain, T. R. Lenka. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT. J. Semicond., 2016, 37(4): 044003. doi: 10.1088/1674-4926/37/4/044003

Chunlei Ma, Guodong Gu, Yuanjie Lü. A high performance InAlN/GaN HEMT with low Ron and gate leakage. J. Semicond., 2016, 37(2): 024009. doi: 10.1088/1674-4926/37/2/024009

Bo Liu, Zhihong Feng, Shaobo Dun, Xiongwen Zhang, Guodong Gu, Yuangang Wang, Peng Xu, Zezhao He, Shujun Cai. An extrinsic fmax > 100 GHz InAlN/GaN HEMT with AlGaN back barrier. J. Semicond., 2013, 34(4): 044006. doi: 10.1088/1674-4926/34/4/044006

Godwin Raj, Hemant Pardeshi, Sudhansu Kumar Pati, N Mohankumar, Chandan Kumar Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices. J. Semicond., 2013, 34(4): 044002. doi: 10.1088/1674-4926/34/4/044002

Devashish Pandey, T.R. Lenka. Model development for analyzing 2DEG sheet charge density and threshold voltage considering interface DOS for AlInN/GaN MOSHEMT. J. Semicond., 2014, 35(10): 104001. doi: 10.1088/1674-4926/35/10/104001

A. Divay, O. Latry, C. Duperrier, F. Temcamani. Ageing of GaN HEMT devices:which degradation indicators?. J. Semicond., 2016, 37(1): 014001. doi: 10.1088/1674-4926/37/1/014001

D.K. Panda, T.R. Lenka. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J. Semicond., 2017, 38(6): 064002. doi: 10.1088/1674-4926/38/6/064002

Yun Lijun, Wei Tongbo, Yan Jianchang, Liu Zhe, Wang Junxi, Li Jinmin. MOCVD epitaxy of InAlN on different templates. J. Semicond., 2011, 32(9): 093001. doi: 10.1088/1674-4926/32/9/093001

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

Bo Liu, Jiayun Yin, Yuanjie Lü, Shaobo Dun, Xiongwen Zhang, Zhihong Feng, Shujun Cai. Unstrained InAlN/GaN heterostructures grown on sapphire substrates by MOCVD. J. Semicond., 2014, 35(11): 113005. doi: 10.1088/1674-4926/35/11/113005

A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio. J. Semicond., 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

P. Murugapandiyan, S. Ravimaran, J. William. 30 nm T-gate enhancement-mode InAlN/AlN/GaN HEMT on SiC substrates for future high power RF applications. J. Semicond., 2017, 38(8): 084001. doi: 10.1088/1674-4926/38/8/084001

Kanjalochan Jena, Raghunandan Swain, T. R. Lenka. Impact of barrier thickness on gate capacitance——modeling and comparative analysis of GaN based MOSHEMTs. J. Semicond., 2015, 36(3): 034003. doi: 10.1088/1674-4926/36/3/034003

Liu Zhe, Wang Junxi, Li Jinmin, Liu Hongxin, Wang Qiyuan, Wang Jun, Zhang Nanhong, Xiao Hongling, Wang Xiaoliang, Zeng Yiping. Growth of GaN on γ-Al2O3/Si(001) Composite Substrates. J. Semicond., 2005, 26(12): 2378.

Liu Beiping, Li Xiaoliang, Zhu Haibo. Cl2-Based Dry Etching of GaN Using Inductively Coupled Plasma. J. Semicond., 2006, 27(7): 1335.

Wang Wenyan, Qin Fuwen, Wu Aimin, Song Shiwei, Liu Ruixian, Jiang Xin, Xu Yin, Gu Biao. Influences of N2 Flow Rate on the Crystalline Characteristics of GaN Films Deposited on Glass Substrate at Low Temperature. J. Semicond., 2008, 29(12): 2376.

Zheng Yingkui, Liu Guoguo, He Zhijing, Liu Xinyu, Wu Dexin. 0.25μm Gate-Length AlGaN/GaN Power HEMTs on Sapphire with fT of 77GHz. J. Semicond., 2006, 27(6): 963.

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

Search

Advanced Search >>

GET CITATION

Bi Y, Wang X L, Xiao H L, Wang C M, Yang C B, Peng E C, Lin D F, Feng C, Jiang L J. Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure[J]. J. Semicond., 2011, 32(8): 083003. doi: 10.1088/1674-4926/32/8/083003.

Export: BibTex EndNote

Article Metrics

Article views: 2756 Times PDF downloads: 2323 Times

History

Manuscript received: 18 August 2015 Manuscript revised: 20 April 2011 Online: Published: 01 August 2011

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误