J. Semicond. > Volume 34 > Issue 8 > Article Number: 083003

The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures

Jiajun Deng 1, , , Pei Chen 1, , Wenjie Wang 1, , Bing Hu 1, , Jiantao Che 1, , Lin Chen 2, , Hailong Wang 2, and Jianhua Zhao 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Fe/(Ga, Mn)As heterostructures were fabricated by all molecular-beam epitaxy. Double-crystal X-ray diffraction and high-resolution cross-sectional transmission electron micrographs show that the Fe layer has a well ordered crystal orientation and an abrupt interface. The different magnetic behavior between the Fe layer and (Ga, Mn)As layer is observed by superconducting quantum interference device magnetometry. X-ray photoelectron spectroscopy measurements indicate no Fe2As and Fe-Ga-As compounds, i.e., no dead magnetic layer at the interface, which strongly affects the magnetic proximity and the polarization of the Mn ion in a thin (Ga, Mn)As region near the interface of the Fe/(Ga, Mn)As heterostructure.

Key words: heterostructuresmagnetic semiconductorferromagnetic metalmolecular-beam epitaxy

Abstract: Fe/(Ga, Mn)As heterostructures were fabricated by all molecular-beam epitaxy. Double-crystal X-ray diffraction and high-resolution cross-sectional transmission electron micrographs show that the Fe layer has a well ordered crystal orientation and an abrupt interface. The different magnetic behavior between the Fe layer and (Ga, Mn)As layer is observed by superconducting quantum interference device magnetometry. X-ray photoelectron spectroscopy measurements indicate no Fe2As and Fe-Ga-As compounds, i.e., no dead magnetic layer at the interface, which strongly affects the magnetic proximity and the polarization of the Mn ion in a thin (Ga, Mn)As region near the interface of the Fe/(Ga, Mn)As heterostructure.

Key words: heterostructuresmagnetic semiconductorferromagnetic metalmolecular-beam epitaxy



References:

[1]

Ohno H. Making nonmagnetic semiconductors ferromagnetic[J]. Science, 1998, 281: 951. doi: 10.1126/science.281.5379.951

[2]

Dietl T, Ohno H, Matsukura F. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J]. Science, 2000, 287: 1019. doi: 10.1126/science.287.5455.1019

[3]

Chen L, Yan S, Xu P F. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature[J]. Appl Phys Lett, 2009, 95: 182505. doi: 10.1063/1.3259821

[4]

Chen L, Yang X, Yang F H. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering[J]. Nano Lett, 2011, 11: 2584. doi: 10.1021/nl201187m

[5]

Maccherozzi F, Sperl M, Panaccione G. Evidence for a magnetic proximity effect up to room temperature at Fe/(Ga, Mn)As interfaces[J]. Phys Rev Lett, 2008, 101: 267201. doi: 10.1103/PhysRevLett.101.267201

[6]

Sperl M, Maccherozzi F, Borgatti F. Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga, Mn)As heterostructures[J]. Phys Rev B, 2010, 81: 035211. doi: 10.1103/PhysRevB.81.035211

[7]

Kobayashi S, Suda K, Aoyama J. Photo-induced precession of magnetization in metal/(Ga, Mn)As systems[J]. IEEE Trans Magnetics, 2010, 46: 2470. doi: 10.1109/TMAG.2010.2042289

[8]

Song C, Sperl M, Utz M. Proximity induced enhancement of the Curie temperature in hybrid spin injection devices[J]. Phys Rev Lett, 2011, 107: 056601. doi: 10.1103/PhysRevLett.107.056601

[9]

Olejnik K, Wadley P, Haigh J A. Exchange bias in a ferromagnetic semiconductor induced by a ferromagnetic metal:Fe/(Ga, Mn)As bilayer films studied by XMCD measurements and SQUID magnetometry[J]. Phys Rev B, 2010, 81: 104402. doi: 10.1103/PhysRevB.81.104402

[10]

Men'shov V N, Tugushev V V, Caprara S. Proximity-induced spin ordering at the interface between a ferromagnetic metal and a magnetic semiconductor[J]. Phys Rev B, 2010, 81: 235212. doi: 10.1103/PhysRevB.81.235212

[11]

Giovanelli L, Panaccione G, Rossi G. Layer-selective spectroscopy of Fe/GaAs(001):Influence of the interface on the magnetic properties[J]. Phys Rev B, 2005, 72: 045221. doi: 10.1103/PhysRevB.72.045221

[12]

Lu J, Meng H J, Deng J J. Strain and magnetic anisotropy of as-grown and annealed Fe films on c(4×4) reconstructed GaAs (001) surface[J]. J Appl Phys, 2009, 106: 013911. doi: 10.1063/1.3159642

[13]

Fleet L R, Kobayashi H, Ohno Y. Interfacial structure and transport properties of Fe/GaAs(001)[J]. J Appl Phys, 2011, 109: 07C.

[14]

Mirbt S, Sanyal B, Isheden C. First-principles calculations of Fe on GaAs(100)[J]. Phys Rev B, 2003, 67: 155421. doi: 10.1103/PhysRevB.67.155421

[15]

Filipe A, Schuhl A, Galtier P. Structure and magnetism of the Fe/GaAs interface[J]. Appl Phys Lett, 1997, 70: 129. doi: 10.1063/1.119284

[16]

Erwin S C, Lee S H, Scheffler M. First-principles study of nucleation, growth, and interface structure of Fe/GaAs[J]. Phys Rev B, 2002, 65: 205422. doi: 10.1103/PhysRevB.65.205422

[17]

Freeland J W, Coulthard I, Antel W J Jr. Interface bonding for Fe thin films on GaAs surfaces of differing morphology[J]. Phys Rev B, 2001, 63: 193301. doi: 10.1103/PhysRevB.63.193301

[1]

Ohno H. Making nonmagnetic semiconductors ferromagnetic[J]. Science, 1998, 281: 951. doi: 10.1126/science.281.5379.951

[2]

Dietl T, Ohno H, Matsukura F. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J]. Science, 2000, 287: 1019. doi: 10.1126/science.287.5455.1019

[3]

Chen L, Yan S, Xu P F. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature[J]. Appl Phys Lett, 2009, 95: 182505. doi: 10.1063/1.3259821

[4]

Chen L, Yang X, Yang F H. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering[J]. Nano Lett, 2011, 11: 2584. doi: 10.1021/nl201187m

[5]

Maccherozzi F, Sperl M, Panaccione G. Evidence for a magnetic proximity effect up to room temperature at Fe/(Ga, Mn)As interfaces[J]. Phys Rev Lett, 2008, 101: 267201. doi: 10.1103/PhysRevLett.101.267201

[6]

Sperl M, Maccherozzi F, Borgatti F. Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga, Mn)As heterostructures[J]. Phys Rev B, 2010, 81: 035211. doi: 10.1103/PhysRevB.81.035211

[7]

Kobayashi S, Suda K, Aoyama J. Photo-induced precession of magnetization in metal/(Ga, Mn)As systems[J]. IEEE Trans Magnetics, 2010, 46: 2470. doi: 10.1109/TMAG.2010.2042289

[8]

Song C, Sperl M, Utz M. Proximity induced enhancement of the Curie temperature in hybrid spin injection devices[J]. Phys Rev Lett, 2011, 107: 056601. doi: 10.1103/PhysRevLett.107.056601

[9]

Olejnik K, Wadley P, Haigh J A. Exchange bias in a ferromagnetic semiconductor induced by a ferromagnetic metal:Fe/(Ga, Mn)As bilayer films studied by XMCD measurements and SQUID magnetometry[J]. Phys Rev B, 2010, 81: 104402. doi: 10.1103/PhysRevB.81.104402

[10]

Men'shov V N, Tugushev V V, Caprara S. Proximity-induced spin ordering at the interface between a ferromagnetic metal and a magnetic semiconductor[J]. Phys Rev B, 2010, 81: 235212. doi: 10.1103/PhysRevB.81.235212

[11]

Giovanelli L, Panaccione G, Rossi G. Layer-selective spectroscopy of Fe/GaAs(001):Influence of the interface on the magnetic properties[J]. Phys Rev B, 2005, 72: 045221. doi: 10.1103/PhysRevB.72.045221

[12]

Lu J, Meng H J, Deng J J. Strain and magnetic anisotropy of as-grown and annealed Fe films on c(4×4) reconstructed GaAs (001) surface[J]. J Appl Phys, 2009, 106: 013911. doi: 10.1063/1.3159642

[13]

Fleet L R, Kobayashi H, Ohno Y. Interfacial structure and transport properties of Fe/GaAs(001)[J]. J Appl Phys, 2011, 109: 07C.

[14]

Mirbt S, Sanyal B, Isheden C. First-principles calculations of Fe on GaAs(100)[J]. Phys Rev B, 2003, 67: 155421. doi: 10.1103/PhysRevB.67.155421

[15]

Filipe A, Schuhl A, Galtier P. Structure and magnetism of the Fe/GaAs interface[J]. Appl Phys Lett, 1997, 70: 129. doi: 10.1063/1.119284

[16]

Erwin S C, Lee S H, Scheffler M. First-principles study of nucleation, growth, and interface structure of Fe/GaAs[J]. Phys Rev B, 2002, 65: 205422. doi: 10.1103/PhysRevB.65.205422

[17]

Freeland J W, Coulthard I, Antel W J Jr. Interface bonding for Fe thin films on GaAs surfaces of differing morphology[J]. Phys Rev B, 2001, 63: 193301. doi: 10.1103/PhysRevB.63.193301

[1]

Lixia Li, Dong Pan, Xuezhe Yu, Hyok So, Jianhua Zhao. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy. J. Semicond., 2017, 38(10): 103001. doi: 10.1088/1674-4926/38/10/103001

[2]

Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

[3]

Bi Jingfeng, Zhao Jianhua, Deng Jiajun, Zheng Yuhong, Wang Weizhu, Li Shushen. Growth,Structure and Magnetic Property of zb-CrAs Films on Different Buffers of InGaAs and GaAs. J. Semicond., 2007, 28(S1): 204.

[4]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[5]

Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504

[6]

Yang Jinghai, Yang Lili, Zhang Yongjun, Liu Wenyan, Wang Dandan, Lang Jihui, Zhao Qingxiang. Ground-State Transition Energy in GaInNAs/GaAs Quantum Well Structures. J. Semicond., 2006, 27(11): 1945.

[7]

Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. J. Semicond., 2019, 40(4): 041901. doi: 10.1088/1674-4926/40/4/041901

[8]

Zhifeng Yu, Hailong Wang, Jialin Ma, Shucheng Tong, Jianhua Zhao. Magneto-transport properties of the off-stoichiometric Co2MnAl film epitaxially grown on GaAs (001). J. Semicond., 2019, 40(5): 052501. doi: 10.1088/1674-4926/40/5/052501

[9]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[10]

Xia Yanqiu, Wu Shuxiang, Liu Yajing, Yu Xiaolong, Li Shuwei. Characterization of Diluted Magnetic Semiconductor Mn0.1Ti0.9O2-δ Thin Film Grown by Molecular Beam Epitaxy. J. Semicond., 2007, 28(7): 1058.

[11]

Lin Guoqiang, Zeng Yiping, Wang Xiaoliang, Liu Hongxin. Effect of a Metal Buffer Layer on GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia. J. Semicond., 2008, 29(10): 1998.

[12]

Du Jian, Li Zhiwen, Zhang Peng. Effect of External Magnetic Field on the Spin-Dependent Transport and Shot Noise of a Ferromagnetic/Semiconductor/Ferromagnetic Heterojunction with Double δ Tunnel Barrier. J. Semicond., 2008, 29(6): 1147.

[13]

Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study. J. Semicond., 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509

[14]

Gang Xiang. Epitaxial lift-off of ferromagnetic (Ga,Mn)As nanoflakes for van der Waals heterostructures. J. Semicond., 2019, 40(8): 080203. doi: 10.1088/1674-4926/40/8/080203

[15]

Yingjie Ma, Tong Zhou, Zhenyang Zhong, Zuimin Jiang. Controllable growth of GeSi nanostructures by molecular beam epitaxy. J. Semicond., 2018, 39(6): 061004. doi: 10.1088/1674-4926/39/6/061004

[16]

Liu Linsheng, Wang Wenxin, Liu Su, Zhao Hongming, Liu Baoli, Jiang Zhongwei, Gao Hanchao, Wang Jia, Huang Qing’an, Chen Hong, Zhou Junming. Growth of AlGaAs on GaAs (110) Surface by Molecular Beam Epitaxy. J. Semicond., 2007, 28(9): 1411.

[17]

Pi Biao, Shu Yongchun, Lin Yaowang, Xu Bo, Yao Jianghong, Xing Xiaodong, Qu Shengchun, Wang Zhanguo. Growth Modes of InP Epilayers Grown by Solid Source Molecular Beam Epitaxy. J. Semicond., 2007, 28(S1): 28.

[18]

Pan Dai, Shulong Lu, Lian Ji, Wei He, Lifeng Bian, Hui Yang, M. Arimochi, H. Yoshida, S. Uchida, M. Ikeda. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy. J. Semicond., 2013, 34(10): 104006. doi: 10.1088/1674-4926/34/10/104006

[19]

Sanghoon Lee, Sunjae Chung, Hakjoon Lee, Xinyu Liu, M. Dobrowolska, J. K. Furdyna. Interlayer exchange coupling in (Ga,Mn)As ferromagnetic semiconductor multilayer systems. J. Semicond., 2019, 40(8): 081503. doi: 10.1088/1674-4926/40/8/081503

[20]

Zhang Fuqiang, Chen Nuofu, Yang Ruixia, Wei Huaipeng, Liu Xianglin, Liu Zhikai, Yang Shaoyan, Chai Chunlin. Magnetic and Structural Properties of Room-Temperature Ferromagnetic Al2O3∶Mn. J. Semicond., 2005, 26(12): 2390.

Search

Advanced Search >>

GET CITATION

J J Deng, P Chen, W J Wang, B Hu, J T Che, L Chen, H L Wang, J H Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures[J]. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003.

Export: BibTex EndNote

Article Metrics

Article views: 603 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 24 January 2013 Manuscript revised: 25 March 2013 Online: Published: 01 August 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误