J. Semicond. > Volume 34 > Issue 8 > Article Number: 084003

The influence of RF power on the electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices

Junfei Shi 1, , Chengyuan Dong 1, , , Wenjun Dai 2, , Jie Wu 1, , Yuting Chen 1, and Runze Zhan 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The influence of radio frequency (RF) power on the properties of magnetron sputtered amorphous indium gallium zinc oxide (a-IGZO) thin films and the related thin-film transistor (TFT) devices is investigated comprehensively. A series of a-IGZO thin films prepared with magnetron sputtering at various RF powers are examined. The results prove that the deposition rate sensitively depends on RF power. In addition, the carrier concentration increases from 0.91×1019 to 2.15×1019 cm-3 with the RF power rising from 40 to 80 W, which may account for the corresponding decrease in the resistivity of the a-IGZO thin films. No evident impacts of RF power are observed on the surface roughness, crystalline nature and stoichiometry of the a-IGZO samples. On the other hand, optical transmittance is apparently influenced by RF power where the extracted optical band-gap value increases from 3.48 to 3.56 eV with RF power varying from 40 to 80 W, as is supposed to result from the carrier-induced band-filling effect. The rise in RF power can also affect the performance of a-IGZO TFTs, in particular by increasing the field-effect mobility clearly, which is assumed to be due to the alteration of the extended states in a-IGZO thin films.

Key words: thin-film transistorsamorphous oxide semiconductorsmagnetron sputteringradio frequency power

Abstract: The influence of radio frequency (RF) power on the properties of magnetron sputtered amorphous indium gallium zinc oxide (a-IGZO) thin films and the related thin-film transistor (TFT) devices is investigated comprehensively. A series of a-IGZO thin films prepared with magnetron sputtering at various RF powers are examined. The results prove that the deposition rate sensitively depends on RF power. In addition, the carrier concentration increases from 0.91×1019 to 2.15×1019 cm-3 with the RF power rising from 40 to 80 W, which may account for the corresponding decrease in the resistivity of the a-IGZO thin films. No evident impacts of RF power are observed on the surface roughness, crystalline nature and stoichiometry of the a-IGZO samples. On the other hand, optical transmittance is apparently influenced by RF power where the extracted optical band-gap value increases from 3.48 to 3.56 eV with RF power varying from 40 to 80 W, as is supposed to result from the carrier-induced band-filling effect. The rise in RF power can also affect the performance of a-IGZO TFTs, in particular by increasing the field-effect mobility clearly, which is assumed to be due to the alteration of the extended states in a-IGZO thin films.

Key words: thin-film transistorsamorphous oxide semiconductorsmagnetron sputteringradio frequency power



References:

[1]

Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Appl Phys Lett, 2003, 82(5): 733. doi: 10.1063/1.1542677

[2]

Nomura K, Ohta H, Ueda K. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor[J]. Science, 2003, 300(5623): 1269. doi: 10.1126/science.1083212

[3]

Wager J F. Transparent electronics[J]. Science, 2003, 300(5623): 1245. doi: 10.1126/science.1085276

[4]

Fortunato E, Pereira L M N, Barquinha P M C. High mobility indium free amorphous oxide thin film transistors[J]. Appl Phys Lett, 2008, 92(22): 22103.

[5]

Orita M, Ohta H, Hirano M. Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤4):a Zn4s conductor[J]. Phil Mag B, 2001, 81(5): 501. doi: 10.1080/13642810110045923

[6]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature (London), 2004, 432(7016): 488. doi: 10.1038/nature03090

[7]

Nomura K, Kamiya T, Ohta H. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O:experiment and ab initio calculations[J]. Phys Rev B, 2007, 75(3): 035212. doi: 10.1103/PhysRevB.75.035212

[8]

Chen J B, Wang L, Su X Q. InGaZnO thin films grown by pulsed laser deposition[J]. Vacuum, 2012, 86(9): 1313. doi: 10.1016/j.vacuum.2011.12.001

[9]

Yabuta H, Sano M, Abe K. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering[J]. Appl Phys Lett, 2006, 89(11): 112123. doi: 10.1063/1.2353811

[10]

Kang D, Lim H, Kim C. Amorphous gallium indium zinc oxide thin film transistors:sensitive to oxygen molecules[J]. Appl Phys Lett, 2007, 90(19): 192101. doi: 10.1063/1.2723543

[11]

Park J S, Jeong J K, Mo Y G. Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment[J]. Appl Phys Lett, 2007, 90(26): 262106. doi: 10.1063/1.2753107

[12]

Lee J M, Cho I T, Lee J H. Full-swing InGaZnO thin film transistor inverter with depletion load[J]. Jpn J Appl Phys, 2009, 48(10): 100202. doi: 10.1143/JJAP.48.100202

[13]

Moon Y K, Lee S, Kim D H. Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices[J]. Jpn J Appl Phys, 2009, 48(3): 031301. doi: 10.1143/JJAP.48.031301

[14]

Chiang H Q, McFarlane B R, Hong D. Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors[J]. J Non-Cryst Solids, 2008, 354(19-25): 2826. doi: 10.1016/j.jnoncrysol.2007.10.105

[15]

Lim W, Kim S H, Wang Y L. Stable room temperature deposited amorphous InGaZnO4 thin film transistors[J]. J Vac Sci Technol B, 2008, 26(3): 959. doi: 10.1116/1.2917075

[16]

Kamiya T, Nomura K, Hirano M. Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive X-ray photoelectron spectroscopy[J]. Phys Status Solidi C, 2008, 5(9): 3098. doi: 10.1002/pssc.v5:9

[17]

Zhu B L, Zhao X Z, Xu S. Oxygen pressure dependences of structure and properties of ZnO films deposited on amorphous glass substrates by pulsed laser deposition[J]. Jpn J Appl Phys, 2008, 47(4): 2225. doi: 10.1143/JJAP.47.2225

[18]

Burstein E. Anomalous optical absorption limit in InSb4[J]. Phys Rev, 1954, 93(3): 632. doi: 10.1103/PhysRev.93.632

[19]

Moss T S. The interpretation of the properties of indium antimonide[J]. Proc Phys Soc Lond B, 1954, 67(10): 775. doi: 10.1088/0370-1301/67/10/306

[20]

Powell M J. The physics of amorphous-silicon thin-film transistors[J]. IEEE Trans Electron Devices, 1989, 36(12): 2753. doi: 10.1109/16.40933

[21]

Nomura K, Kamiya T, Ohta H. Relationship between non-localized tail states and carrier transport in amorphous oxide semiconductor In-Ga-Zn-O[J]. Phys Status Solidi A, 2008, 205(8): 1910. doi: 10.1002/pssa.v205:8

[1]

Hoffman R L, Norris B J, Wager J F. ZnO-based transparent thin-film transistors[J]. Appl Phys Lett, 2003, 82(5): 733. doi: 10.1063/1.1542677

[2]

Nomura K, Ohta H, Ueda K. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor[J]. Science, 2003, 300(5623): 1269. doi: 10.1126/science.1083212

[3]

Wager J F. Transparent electronics[J]. Science, 2003, 300(5623): 1245. doi: 10.1126/science.1085276

[4]

Fortunato E, Pereira L M N, Barquinha P M C. High mobility indium free amorphous oxide thin film transistors[J]. Appl Phys Lett, 2008, 92(22): 22103.

[5]

Orita M, Ohta H, Hirano M. Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤4):a Zn4s conductor[J]. Phil Mag B, 2001, 81(5): 501. doi: 10.1080/13642810110045923

[6]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature (London), 2004, 432(7016): 488. doi: 10.1038/nature03090

[7]

Nomura K, Kamiya T, Ohta H. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O:experiment and ab initio calculations[J]. Phys Rev B, 2007, 75(3): 035212. doi: 10.1103/PhysRevB.75.035212

[8]

Chen J B, Wang L, Su X Q. InGaZnO thin films grown by pulsed laser deposition[J]. Vacuum, 2012, 86(9): 1313. doi: 10.1016/j.vacuum.2011.12.001

[9]

Yabuta H, Sano M, Abe K. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering[J]. Appl Phys Lett, 2006, 89(11): 112123. doi: 10.1063/1.2353811

[10]

Kang D, Lim H, Kim C. Amorphous gallium indium zinc oxide thin film transistors:sensitive to oxygen molecules[J]. Appl Phys Lett, 2007, 90(19): 192101. doi: 10.1063/1.2723543

[11]

Park J S, Jeong J K, Mo Y G. Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment[J]. Appl Phys Lett, 2007, 90(26): 262106. doi: 10.1063/1.2753107

[12]

Lee J M, Cho I T, Lee J H. Full-swing InGaZnO thin film transistor inverter with depletion load[J]. Jpn J Appl Phys, 2009, 48(10): 100202. doi: 10.1143/JJAP.48.100202

[13]

Moon Y K, Lee S, Kim D H. Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices[J]. Jpn J Appl Phys, 2009, 48(3): 031301. doi: 10.1143/JJAP.48.031301

[14]

Chiang H Q, McFarlane B R, Hong D. Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors[J]. J Non-Cryst Solids, 2008, 354(19-25): 2826. doi: 10.1016/j.jnoncrysol.2007.10.105

[15]

Lim W, Kim S H, Wang Y L. Stable room temperature deposited amorphous InGaZnO4 thin film transistors[J]. J Vac Sci Technol B, 2008, 26(3): 959. doi: 10.1116/1.2917075

[16]

Kamiya T, Nomura K, Hirano M. Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive X-ray photoelectron spectroscopy[J]. Phys Status Solidi C, 2008, 5(9): 3098. doi: 10.1002/pssc.v5:9

[17]

Zhu B L, Zhao X Z, Xu S. Oxygen pressure dependences of structure and properties of ZnO films deposited on amorphous glass substrates by pulsed laser deposition[J]. Jpn J Appl Phys, 2008, 47(4): 2225. doi: 10.1143/JJAP.47.2225

[18]

Burstein E. Anomalous optical absorption limit in InSb4[J]. Phys Rev, 1954, 93(3): 632. doi: 10.1103/PhysRev.93.632

[19]

Moss T S. The interpretation of the properties of indium antimonide[J]. Proc Phys Soc Lond B, 1954, 67(10): 775. doi: 10.1088/0370-1301/67/10/306

[20]

Powell M J. The physics of amorphous-silicon thin-film transistors[J]. IEEE Trans Electron Devices, 1989, 36(12): 2753. doi: 10.1109/16.40933

[21]

Nomura K, Kamiya T, Ohta H. Relationship between non-localized tail states and carrier transport in amorphous oxide semiconductor In-Ga-Zn-O[J]. Phys Status Solidi A, 2008, 205(8): 1910. doi: 10.1002/pssa.v205:8

[1]

Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003

[2]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[3]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

[4]

Zhang Jun, Xie Erqing, Fu Yujun, Li Hui, Shao Lexi. Influence of Substrate Temperature and Nitrogen Gas on Zinc Nitride Thin Films Prepared by RF Reactive Sputtering. J. Semicond., 2007, 28(8): 1173.

[5]

Dai Zhenqing, Zhang Liying, Chen Changxin, Qian Bingjian, Xu Dong, Chen Haiyan, Wei Liangming, Zhang Yafei. Fabrication of SiC nanowire thin-film transistors using dielectrophoresis. J. Semicond., 2012, 33(11): 114001. doi: 10.1088/1674-4926/33/11/114001

[6]

Zhang Huafu, Yang Shugang, Liu Hanfa, Yuan Changkun. Preparation and characterization of transparent conducting ZnO:W films by DC magnetron sputtering. J. Semicond., 2011, 32(4): 043002. doi: 10.1088/1674-4926/32/4/043002

[7]

Ma Quanbao, Zhu Liping, Ye Zhizhen, He Haiping, Wang Jingrui, Hu Shaohua, Zhao Binghui. Influence of Sputtering Pressure on the Properties of ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering. J. Semicond., 2007, 28(S1): 285.

[8]

Hong Li, Hongbin Pu, Chunlei Zheng, Zhiming Chen. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering. J. Semicond., 2015, 36(6): 063005. doi: 10.1088/1674-4926/36/6/063005

[9]

Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001

[10]

Bing Cheng, Yijun Yin, Jianqiang Han, Jie Zhang. The TCR of Ni24.9Cr72.5Si2.6 thin films deposited by DC and RF magnetronsputtering. J. Semicond., 2017, 38(5): 053005. doi: 10.1088/1674-4926/38/5/053005

[11]

Zhang Huafu, Liu Hanfa, Lei Chengxin, Zhou Aiping, Yuan Changkun. Low-temperature deposition of transparent conducting Mn–W co-doped ZnO thin films. J. Semicond., 2010, 31(8): 083005. doi: 10.1088/1674-4926/31/8/083005

[12]

Chen Weidong, Feng Lianghuan, Lei Zhi, Zhang Jingquan, Wu Lili, Cai Wei, Cai Yaping, Yao Feifei, Li Wei, Li Bing, Zheng Jiagui. Growth of AlSb Polycrystalline Films by Magnetron Sputtering and Annealing. J. Semicond., 2006, 27(3): 541.

[13]

Li Baohe, Hwang Pol, Yang Tao, Zhai Zhonghai, Zhu Fengwu. Structure and Magnetic Properties of Vacuum Annealed Fe/Pt Multilayers. J. Semicond., 2005, 26(S1): 32.

[14]

Guo Hengqun, Lin Shangxin, Wang Qiming. Photoluminescence and Application of Nonlinear Optical Property of nc-Si-SiO2 Films. J. Semicond., 2006, 27(2): 345.

[15]

Yunhong Hou, Meng Zhang, Guowei Han, Chaowei Si, Yongmei Zhao, Jin Ning. A review:aluminum nitride MEMS contour-mode resonator. J. Semicond., 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001

[16]

Chunlei Zheng, Hongbin Pu, Hong Li, Zhiming Chen. Photoelectric properties of p-β-FeSi2/n-4H-SiC heterojunction near-infrared photodiode. J. Semicond., 2015, 36(5): 054009. doi: 10.1088/1674-4926/36/5/054009

[17]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[18]

Zhang Jinmin, Xie Quan, Zeng Wuxian, Liang Yan, Zhang Yong, Yu Ping, Tian Hua. Effects of Annealing on Atomic Interdiffusion and Microstructures in Fe/Si Systems. J. Semicond., 2007, 28(12): 1888.

[19]

Li Jun, Yan Jinliang, Sun Xueqing, Li Kewei, Yang Chunxiu. Influence of Ag Layer Thickness on the Properties of ZnO/Ag/ZnO Films. J. Semicond., 2007, 28(9): 1402.

[20]

Zhang Huafu, Lei Chengxin, Liu Hanfa, Yuan Changkun. Thickness dependence of the properties of transparent conducting ZnO:Zr films deposited on flexible substrates by RF magnetron sputtering. J. Semicond., 2009, 30(4): 043004. doi: 10.1088/1674-4926/30/4/043004

Search

Advanced Search >>

GET CITATION

J F Shi, C Y Dong, W J Dai, J Wu, Y T Chen, R Z Zhan. The influence of RF power on the electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices[J]. J. Semicond., 2013, 34(8): 084003. doi: 10.1088/1674-4926/34/8/084003.

Export: BibTex EndNote

Article Metrics

Article views: 604 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 09 January 2013 Manuscript revised: 04 March 2013 Online: Published: 01 August 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误