J. Semicond. > Volume 34 > Issue 8 > Article Number: 085004

An ultra-low-power area-efficient non-volatile memory in a 0.18 μm single-poly CMOS process for passive RFID tags

Xiaoyun Jia 1, 2, , Peng Feng 1, , Shengguang Zhang 1, 2, , Nanjian Wu 1, , , Baiqin Zhao 1, and Su Liu 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper presents an ultra-low-power area-efficient non-volatile memory (NVM) in a 0.18 μm single-poly standard CMOS process for passive radio frequency identification (RFID) tags. In the memory cell, a novel low-power operation method is proposed to realize bi-directional Fowler-Nordheim tunneling during write operation. Furthermore, the cell is designed with PMOS transistors and coupling capacitors to minimize its area. In order to improve its reliability, the cell consists of double floating gates to store the data, and the 1 kbit NVM was implemented in a 0.18 μm single-poly standard CMOS process. The area of the memory cell and 1 kbit memory array is 96 μm2 and 0.12 mm2, respectively. The measured results indicate that the program/erase voltage ranges from 5 to 6 V. The power consumption of the read/write operation is 0.19 μW/0.69 μW at a read/write rate of (268 kb/s)/(3.0 kb/s).

Key words: non-volatile memoryultra-low-powerarea-efficientCMOSRFID

Abstract: This paper presents an ultra-low-power area-efficient non-volatile memory (NVM) in a 0.18 μm single-poly standard CMOS process for passive radio frequency identification (RFID) tags. In the memory cell, a novel low-power operation method is proposed to realize bi-directional Fowler-Nordheim tunneling during write operation. Furthermore, the cell is designed with PMOS transistors and coupling capacitors to minimize its area. In order to improve its reliability, the cell consists of double floating gates to store the data, and the 1 kbit NVM was implemented in a 0.18 μm single-poly standard CMOS process. The area of the memory cell and 1 kbit memory array is 96 μm2 and 0.12 mm2, respectively. The measured results indicate that the program/erase voltage ranges from 5 to 6 V. The power consumption of the read/write operation is 0.19 μW/0.69 μW at a read/write rate of (268 kb/s)/(3.0 kb/s).

Key words: non-volatile memoryultra-low-powerarea-efficientCMOSRFID



References:

[1]

Finkenzeller K. RFID handbook:fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication identification[J]. United Kingdom:John Wiley & Sons, 2010.

[2]

Feng Peng, Zhang Qi, Wu Nanjian. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18μm standard CMOS process[J]. Journal of Semiconductors, 2011, 32: 115013. doi: 10.1088/1674-4926/32/11/115013

[3]

Wang Yaowen, Guang Jun, Mao Wei. Design of a passive UHF RFID tag for the ISO18000-6C protocol[J]. Journal of Semiconductors, 2011, 32: 055009. doi: 10.1088/1674-4926/32/5/055009

[4]

Yin J, Yi J, Law M K. A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor[J]. IEEE J Solid-State Circuits, 2010, 45: 2404.

[5]

Ohsaki K, Asamoto N, Takagaki S. A single poly EEPROM cell structure for use in standard CMOS processes[J]. IEEE J Solid-State Circuits, 1994, 29: 311. doi: 10.1109/4.278354

[6]

Raszka J, Advani M, Tiwari V. Embedded flash memory for security applications in a 0.13μm CMOS logic process[J]. IEEE ISSCC Dig Tech Papers, 2004, 1: 46.

[7]

Pan L, Luo X, Yan Y. Pure logic CMOS based embedded non-volatile random access memory for low power RFID application[J]. Custom Integrated Circuits Conference, 2008: 197.

[8]

Feng P, Li Y, Wu N. An ultra low power non-volatile memory in standard CMOS process for passive RFID tags[J]. Custom Integrated Circuits Conference, 2009: 713.

[9]

Zhao D, Yan N, Xu W. A low power, single poly, non-volatile memory for passive RFID tags[J]. Journal of Semiconductors, 2008, 29: 1.

[10]

Pikhay E, Dayan V, Roizin Y. A low-cost low-power non-volatile memory for RFID applications[J]. IEEE International Symposium on Circuits and Systems (ISCAS), 2012: 1827.

[1]

Finkenzeller K. RFID handbook:fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication identification[J]. United Kingdom:John Wiley & Sons, 2010.

[2]

Feng Peng, Zhang Qi, Wu Nanjian. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18μm standard CMOS process[J]. Journal of Semiconductors, 2011, 32: 115013. doi: 10.1088/1674-4926/32/11/115013

[3]

Wang Yaowen, Guang Jun, Mao Wei. Design of a passive UHF RFID tag for the ISO18000-6C protocol[J]. Journal of Semiconductors, 2011, 32: 055009. doi: 10.1088/1674-4926/32/5/055009

[4]

Yin J, Yi J, Law M K. A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor[J]. IEEE J Solid-State Circuits, 2010, 45: 2404.

[5]

Ohsaki K, Asamoto N, Takagaki S. A single poly EEPROM cell structure for use in standard CMOS processes[J]. IEEE J Solid-State Circuits, 1994, 29: 311. doi: 10.1109/4.278354

[6]

Raszka J, Advani M, Tiwari V. Embedded flash memory for security applications in a 0.13μm CMOS logic process[J]. IEEE ISSCC Dig Tech Papers, 2004, 1: 46.

[7]

Pan L, Luo X, Yan Y. Pure logic CMOS based embedded non-volatile random access memory for low power RFID application[J]. Custom Integrated Circuits Conference, 2008: 197.

[8]

Feng P, Li Y, Wu N. An ultra low power non-volatile memory in standard CMOS process for passive RFID tags[J]. Custom Integrated Circuits Conference, 2009: 713.

[9]

Zhao D, Yan N, Xu W. A low power, single poly, non-volatile memory for passive RFID tags[J]. Journal of Semiconductors, 2008, 29: 1.

[10]

Pikhay E, Dayan V, Roizin Y. A low-cost low-power non-volatile memory for RFID applications[J]. IEEE International Symposium on Circuits and Systems (ISCAS), 2012: 1827.

Zhao Dixian, Yan Na, Xu Wen, Yang Liwu, Wang Junyu, Min Hao. A Low-Power,Single-Poly,Non-Volatile Memory for Passive RFID Tags. J. Semicond., 2008, 29(1): 99.

Xie Weifu, Li Yongming, Zhang Chun, Wang Zhihua. CMOS Implementation of an RF PLL Synthesizer for Use in RFID Systems. J. Semicond., 2008, 29(8): 1595.

Gao Tongqiang, Zhang Chun, Chi Baoyong, Wang Zhihua. A CMOS Power Amplifier with 100% and 18% Modulation Depth for Mobile RFID Readers. J. Semicond., 2008, 29(6): 1044.

Bai Rongrong, Li Yongming, Zhang Chun, Wang Zhihua. A Low Power,Large Dynamic Range 915MHz Passive RFID Tag. J. Semicond., 2007, 28(8): 1316.

Che Wenyi, Guan Shuo, Wang Xiao, Xiong Tingwen, Xi Jingtian, Tan Xi, Yan Na, Min Hao. Analysis and design of power efficient semi-passive RFID tag. J. Semicond., 2010, 31(7): 075013. doi: 10.1088/1674-4926/31/7/075013

Pang Zegui, Zhuang Yiqi, Li Xiaoming, Li Jun. A Low-Voltage, High Efficiency Power Generation Structure for UHF RFID. J. Semicond., 2008, 29(2): 293.

Li Wenyuan, Wang Zhigong, . Low-Power CMOS IC for Function Electrical Stimulation of Nerves. J. Semicond., 2007, 28(3): 393.

Li Xuechu, Gao Qingyun, Qin Shicai. A Low-Power High-Frequency CMOS Peak Detector. J. Semicond., 2006, 27(10): 1707.

Jin Boshi, Li Lewei, Wu Qun, Yang Guohui, Zhang Kuang. A highly linear fully integrated CMOS power amplifier with an analog predistortion technique. J. Semicond., 2011, 32(5): 054006. doi: 10.1088/1674-4926/32/5/054006

Han Shuguang, Chi Baoyong, Wang Zhihua. A Novel Offset-Cancellation Technique for Low Voltage CMOS Differential Amplifiers. J. Semicond., 2006, 27(5): 778.

Ding Jingfeng, Wang Zhigong, Zhu En, Zhang Li, Wang Gui. 12Gb/s 0.25μm CMOS Low-Power 1∶4 Demultiplexer. J. Semicond., 2006, 27(1): 19.

Zhang Qi, Kuang Xiaofei, Wu Nanjian. An ultra-low-power RF transceiver for WBANs in medical applications. J. Semicond., 2011, 32(6): 065008. doi: 10.1088/1674-4926/32/6/065008

Ning Yanqing, Wang Zhihua, Chen Hongyi. An Ultra Wideband VHF CMOS LC VCO. J. Semicond., 2006, 27(1): 14.

Jia Hailong, Ni Weining, Shi Yin, Dai F F. A Novel Power Supply Solution of a Passive RFID Transponder. J. Semicond., 2007, 28(9): 1346.

Chen Liying, Wu Shunhua, Mao Luhong, Hao Xianren. Design of an Analog Front End for Passive UHF RFID Transponder IC. J. Semicond., 2007, 28(5): 686.

Hu Jianyun, He Yan, Min Hao. Design and Analysis of Analog Front-End of Passive RFID Transponders. J. Semicond., 2006, 27(6): 999.

Chen Liying, Mao Luhong, Wu Shunhua, Zheng Xuan. A Novel Impedance Matching Approach for Passive UHF RFID Transponder ICs. J. Semicond., 2008, 29(3): 516.

Zhou Shenghua, Yang Zhichao, Wu Nanjian, Li Meiyun. Small Size,Low Power RFID RF Front End Circuit Design. J. Semicond., 2006, 27(13): 361.

Liu Ke, Yang Haigang. A CMOS Dynamic Comparator for Pipelined ADCs with Improved Speed/Power Ratio. J. Semicond., 2008, 29(1): 75.

Wang Honglai, Zhang Xiaoxing, Dai Yujie, Lü Yingjie, Toshimasa Matsuoka, Wang Jun, Kenji Taniguchi. A low-voltage low-power CMOS voltage reference based on subthreshold MOSFETs. J. Semicond., 2011, 32(8): 085009. doi: 10.1088/1674-4926/32/8/085009

Search

Advanced Search >>

GET CITATION

X Y Jia, P Feng, S G Zhang, N J Wu, B Q Zhao, S Liu. An ultra-low-power area-efficient non-volatile memory in a 0.18 μm single-poly CMOS process for passive RFID tags[J]. J. Semicond., 2013, 34(8): 085004. doi: 10.1088/1674-4926/34/8/085004.

Export: BibTex EndNote

Article Metrics

Article views: 97 Times PDF downloads: 2 Times

History

Manuscript received: 13 December 2012 Manuscript revised: 14 April 2013 Online: Published: 01 August 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误