J. Semicond. > Volume 35 > Issue 2 > Article Number: 024011

Effects of defect states on the performance of CuInGaSe2 solar cells

Fucheng Wan 1, , Fuling Tang 1, 2, , , Hongtao Xue 1, , Wenjiang Lu 1, 2, , Yudong Feng 2, and Zhiyuan Rui 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Device modeling has been carried out to investigate the effects of defect states on the performance of ideal CuInGaSe2 (CIGS) thin film solar cells theoretically. The varieties of defect states (location in the band gap and densities) in absorption layer CIGS and in buffer layer CdS were examined. The performance parameters:open-circuit voltage, short-circuit current, fill factor, and photoelectric conversion efficiency for different defect states were quantitatively analyzed. We found that defect states always harm the performance of CIGS solar cells, but when defect state density is less than 1014 cm-3 in CIGS or less than 1018 cm-3 in CdS, defect states have little effect on the performances. When defect states are located in the middle of the band gap, they are more harmful. The effects of temperature and thickness are also considered. We found that CIGS solar cells have optimal performance at about 170 K and 2 μm of CIGS is enough for solar light absorption.

Key words: device modelingdefect statessolar cellconversion efficiency

Abstract: Device modeling has been carried out to investigate the effects of defect states on the performance of ideal CuInGaSe2 (CIGS) thin film solar cells theoretically. The varieties of defect states (location in the band gap and densities) in absorption layer CIGS and in buffer layer CdS were examined. The performance parameters:open-circuit voltage, short-circuit current, fill factor, and photoelectric conversion efficiency for different defect states were quantitatively analyzed. We found that defect states always harm the performance of CIGS solar cells, but when defect state density is less than 1014 cm-3 in CIGS or less than 1018 cm-3 in CdS, defect states have little effect on the performances. When defect states are located in the middle of the band gap, they are more harmful. The effects of temperature and thickness are also considered. We found that CIGS solar cells have optimal performance at about 170 K and 2 μm of CIGS is enough for solar light absorption.

Key words: device modelingdefect statessolar cellconversion efficiency



References:

[1]

Chen X, Zhao Y, Yao R. Impact of lattice volume on the band gap broadening of isovalent S-doped CuInSe2[J]. Journal of Semiconductors, 2008, 29: 1883.

[2]

Cao J, Qu S, Liu K. Effect of bath temperature on the properties of CuInxGa1-xSe2 thin films grown by the electrodeposition technique[J]. Journal of Semiconductors, 2010, 31: 083003. doi: 10.1088/1674-4926/31/8/083003

[3]

Song J, Li S S, Huang C H. Device modeling and simulation of the performance of Cu(In1-x, Gax)Se2 solar cells[J]. Solid-State Electron, 2004, 48: 73. doi: 10.1016/S0038-1101(03)00289-2

[4]

Bouloufa A, Djessas K, Zegadi A. Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-1D[J]. Thin Solid Films, 2007, 515: 6285. doi: 10.1016/j.tsf.2006.12.110

[5]

Novikov G F, Rabenok E V, Jeng M J. The study of loss kinetics of current carriers in copper-indium-gallium selenide by microwave photoconductivity method[J]. Journal of Renewable Sustainable Energy, 2012, 4: 011604. doi: 10.1063/1.3670408

[6]

Ishizuka S, Yamada A, Fons P. Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material[J]. Journal Renewable Sustainable Energy, 2009, 1: 013102. doi: 10.1063/1.3005376

[7]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488: 294. doi: 10.1038/nature11475

[8]

Ramanathan K, Contreras M A, Perkins C L. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells.[J]. Progress in Photovoltaics:Research and Applications, 2003, 11: 225. doi: 10.1002/(ISSN)1099-159X

[9]

Lin A G, Ding J N, Yuan N Y. Analysis of the p+/p window layer of thin film solar cells by simulation[J]. Journal of Semiconductors, 2012, 33: 023002. doi: 10.1088/1674-4926/33/2/023002

[10]

Datta A, Damon-Lacoste J, Cabarrocas P R. Defect states on the surfaces of a P-type c-Si wafer and how they control the performance of a double heterojunction solar cell[J]. Solar Energy Materials and Solar Cells, 2008, 92: 1500. doi: 10.1016/j.solmat.2008.06.015

[11]

Datta A, Damon-Lacoste J, Nath M. Dominant role of interfaces in solar cells with N-a-Si:H/P-c-Si heterojunction with intrinsic thin layer[J]. Mater Sci Eng B, 2009, 159: 10.

[12]

Wei S H, Zunger A. Band offsets and optical bowings of chalcopyrites and Zn-based Ⅱ-Ⅵ alloys[J]. J Appl Phys, 1995, 78: 3846. doi: 10.1063/1.359901

[13]

Schroeder D J, Hernandez J L, Rockett A A. Point defects and hole transport in epitaxial CuIn1-xGaxSe2[J]. Ternary and Multinary Compounds:Proceedings of the 11th International Conference on Ternary and Multinary Compounds, 1999: 749.

[14]

Hanna G, Jasenek A, Rau U. Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2[J]. Thin Solid Films, 2001, 387: 71. doi: 10.1016/S0040-6090(00)01710-7

[15]

Tang F L, Zhu Z X, Xue H T. Optical properties of Al-doped CuInSe2 from the first principle calculation[J]. Physica B, 2012, 407: 4814. doi: 10.1016/j.physb.2012.09.015

[16]

Xue H T, Lu W J, Zhu Z X. Al-doped CuInSe2:an ab initio study of structural and electronic properties of a photovoltaic material[J]. Advanced Materials Research, 2012, 512-515: 1543. doi: 10.4028/www.scientific.net/AMR.512-515

[17]

Xue H T, Tang F L, Lu W J. First-principles investigation of structural phase transitions and electronic properties of CuGaSe2 up to 100 GPa[J]. Computational Materials Science, 2013, 67: 21. doi: 10.1016/j.commatsci.2012.08.031

[18]

Wan F C, Tang F L, Zhu Z X. First-princip les investig ation of the optical properties of CuIn(SxSe1-x)2[J]. Materials Science in Semiconductor Processing, 2013, 16: 1422. doi: 10.1016/j.mssp.2013.05.009

[19]

Hinuma Y, Oba F, Kumagai Y. Band offsets of CuInSe2/CdS and CuInSe2/ZnS (110) interfaces:a hybrid density functional theory study[J]. Phys Rev B, 2013, 88: 035305. doi: 10.1103/PhysRevB.88.035305

[20]

Dharmadasa I M. Fermi level pinning and effects on CuInGaSe2-based thin-film solar cells[J]. Semicond Sci Technol, 2009, 24: 055016. doi: 10.1088/0268-1242/24/5/055016

[21]

Vaynzo Y, Bakulin A A, Gélinas S. Direct observation of photoinduced bound charge-pair states at an organic-Inorganic semiconductor interface[J]. Phys Rev Lett, 2012, 108: 246605. doi: 10.1103/PhysRevLett.108.246605

[22]

Zhang S B, Wei S H, Zunger A. Stabilization of ternary compounds via ordered arrays of defect pairs[J]. Phys Rev Lett, 1997, 78: 4059. doi: 10.1103/PhysRevLett.78.4059

[23]

Zhang S B, Wei S H, Zunger A. Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Phys Rev B, 1998, 57: 9642. doi: 10.1103/PhysRevB.57.9642

[24]

Sugiyama M, Nakai R, Nakanishi H. Interface Fermi level pinning in a Cu/p-CuGaS2 Schottky diode[J]. Journal of Physics and Chemistry of Solids, 2003, 64: 1787. doi: 10.1016/S0022-3697(03)00144-6

[25]

Dharmadasa I M, Bunning J D, Samantilleke A P. Effects of multi-defects at metal/semiconductor interfaces on electrical properties and their influence on stability and life time of thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2005, 86: 373. doi: 10.1016/j.solmat.2004.08.009

[26]

Dullweber T, Hanna G, Shams-Kolahi W. Study of the effect of gallium grading in Cu(In, Ga)Se2[J]. Thin Solid Films, 2000, 361: 478.

[27]

Dullweber T, Hanna G, Rau U. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors[J]. Solar Energy Materials and Solar Cells, 2001, 67: 145. doi: 10.1016/S0927-0248(00)00274-9

[28]

Zhu H, Kalkan A K, Hou J. Application of AMPS-1D for solar cell simulation[J]. AIP Conference Proceedings, 1999, 462: 309.

[29]

NREL, solar Spectral Irradiance:Air Mass1.5, http://rredc.nrel.gov/solar/spectra/aml.5/

[1]

Chen X, Zhao Y, Yao R. Impact of lattice volume on the band gap broadening of isovalent S-doped CuInSe2[J]. Journal of Semiconductors, 2008, 29: 1883.

[2]

Cao J, Qu S, Liu K. Effect of bath temperature on the properties of CuInxGa1-xSe2 thin films grown by the electrodeposition technique[J]. Journal of Semiconductors, 2010, 31: 083003. doi: 10.1088/1674-4926/31/8/083003

[3]

Song J, Li S S, Huang C H. Device modeling and simulation of the performance of Cu(In1-x, Gax)Se2 solar cells[J]. Solid-State Electron, 2004, 48: 73. doi: 10.1016/S0038-1101(03)00289-2

[4]

Bouloufa A, Djessas K, Zegadi A. Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-1D[J]. Thin Solid Films, 2007, 515: 6285. doi: 10.1016/j.tsf.2006.12.110

[5]

Novikov G F, Rabenok E V, Jeng M J. The study of loss kinetics of current carriers in copper-indium-gallium selenide by microwave photoconductivity method[J]. Journal of Renewable Sustainable Energy, 2012, 4: 011604. doi: 10.1063/1.3670408

[6]

Ishizuka S, Yamada A, Fons P. Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material[J]. Journal Renewable Sustainable Energy, 2009, 1: 013102. doi: 10.1063/1.3005376

[7]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488: 294. doi: 10.1038/nature11475

[8]

Ramanathan K, Contreras M A, Perkins C L. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells.[J]. Progress in Photovoltaics:Research and Applications, 2003, 11: 225. doi: 10.1002/(ISSN)1099-159X

[9]

Lin A G, Ding J N, Yuan N Y. Analysis of the p+/p window layer of thin film solar cells by simulation[J]. Journal of Semiconductors, 2012, 33: 023002. doi: 10.1088/1674-4926/33/2/023002

[10]

Datta A, Damon-Lacoste J, Cabarrocas P R. Defect states on the surfaces of a P-type c-Si wafer and how they control the performance of a double heterojunction solar cell[J]. Solar Energy Materials and Solar Cells, 2008, 92: 1500. doi: 10.1016/j.solmat.2008.06.015

[11]

Datta A, Damon-Lacoste J, Nath M. Dominant role of interfaces in solar cells with N-a-Si:H/P-c-Si heterojunction with intrinsic thin layer[J]. Mater Sci Eng B, 2009, 159: 10.

[12]

Wei S H, Zunger A. Band offsets and optical bowings of chalcopyrites and Zn-based Ⅱ-Ⅵ alloys[J]. J Appl Phys, 1995, 78: 3846. doi: 10.1063/1.359901

[13]

Schroeder D J, Hernandez J L, Rockett A A. Point defects and hole transport in epitaxial CuIn1-xGaxSe2[J]. Ternary and Multinary Compounds:Proceedings of the 11th International Conference on Ternary and Multinary Compounds, 1999: 749.

[14]

Hanna G, Jasenek A, Rau U. Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2[J]. Thin Solid Films, 2001, 387: 71. doi: 10.1016/S0040-6090(00)01710-7

[15]

Tang F L, Zhu Z X, Xue H T. Optical properties of Al-doped CuInSe2 from the first principle calculation[J]. Physica B, 2012, 407: 4814. doi: 10.1016/j.physb.2012.09.015

[16]

Xue H T, Lu W J, Zhu Z X. Al-doped CuInSe2:an ab initio study of structural and electronic properties of a photovoltaic material[J]. Advanced Materials Research, 2012, 512-515: 1543. doi: 10.4028/www.scientific.net/AMR.512-515

[17]

Xue H T, Tang F L, Lu W J. First-principles investigation of structural phase transitions and electronic properties of CuGaSe2 up to 100 GPa[J]. Computational Materials Science, 2013, 67: 21. doi: 10.1016/j.commatsci.2012.08.031

[18]

Wan F C, Tang F L, Zhu Z X. First-princip les investig ation of the optical properties of CuIn(SxSe1-x)2[J]. Materials Science in Semiconductor Processing, 2013, 16: 1422. doi: 10.1016/j.mssp.2013.05.009

[19]

Hinuma Y, Oba F, Kumagai Y. Band offsets of CuInSe2/CdS and CuInSe2/ZnS (110) interfaces:a hybrid density functional theory study[J]. Phys Rev B, 2013, 88: 035305. doi: 10.1103/PhysRevB.88.035305

[20]

Dharmadasa I M. Fermi level pinning and effects on CuInGaSe2-based thin-film solar cells[J]. Semicond Sci Technol, 2009, 24: 055016. doi: 10.1088/0268-1242/24/5/055016

[21]

Vaynzo Y, Bakulin A A, Gélinas S. Direct observation of photoinduced bound charge-pair states at an organic-Inorganic semiconductor interface[J]. Phys Rev Lett, 2012, 108: 246605. doi: 10.1103/PhysRevLett.108.246605

[22]

Zhang S B, Wei S H, Zunger A. Stabilization of ternary compounds via ordered arrays of defect pairs[J]. Phys Rev Lett, 1997, 78: 4059. doi: 10.1103/PhysRevLett.78.4059

[23]

Zhang S B, Wei S H, Zunger A. Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Phys Rev B, 1998, 57: 9642. doi: 10.1103/PhysRevB.57.9642

[24]

Sugiyama M, Nakai R, Nakanishi H. Interface Fermi level pinning in a Cu/p-CuGaS2 Schottky diode[J]. Journal of Physics and Chemistry of Solids, 2003, 64: 1787. doi: 10.1016/S0022-3697(03)00144-6

[25]

Dharmadasa I M, Bunning J D, Samantilleke A P. Effects of multi-defects at metal/semiconductor interfaces on electrical properties and their influence on stability and life time of thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2005, 86: 373. doi: 10.1016/j.solmat.2004.08.009

[26]

Dullweber T, Hanna G, Shams-Kolahi W. Study of the effect of gallium grading in Cu(In, Ga)Se2[J]. Thin Solid Films, 2000, 361: 478.

[27]

Dullweber T, Hanna G, Rau U. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors[J]. Solar Energy Materials and Solar Cells, 2001, 67: 145. doi: 10.1016/S0927-0248(00)00274-9

[28]

Zhu H, Kalkan A K, Hou J. Application of AMPS-1D for solar cell simulation[J]. AIP Conference Proceedings, 1999, 462: 309.

[29]

NREL, solar Spectral Irradiance:Air Mass1.5, http://rredc.nrel.gov/solar/spectra/aml.5/

[1]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[2]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[3]

Wang Jianbo, Xiang Bing, Lou Chaogang, Zhang Xiaobing, Lei Wei, Mu Hui, Sun Qiang. Calculation of the Efficiency of GaAs Quantum Well Solar Cells. J. Semicond., 2006, 27(6): 1038.

[4]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[5]

Shaoying Ke, Chong Wang, Tao Pan, Jie Yang, Yu Yang. Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell. J. Semicond., 2014, 35(3): 034013. doi: 10.1088/1674-4926/35/3/034013

[6]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[7]

Zongcun Liang, Dianlei Wang, Yanbin Zhu. Effects of substrate characteristics on the passivation performance of ALD-Al2O3 thin film for high-efficiency solar cells. J. Semicond., 2014, 35(5): 054002. doi: 10.1088/1674-4926/35/5/054002

[8]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[9]

P. Vimala, N. B. Balamurugan. Modeling and simulation of nanoscale tri-gate MOSFETs including quantum effects. J. Semicond., 2014, 35(3): 034001. doi: 10.1088/1674-4926/35/3/034001

[10]

Haixiao Wang, Xinhe Zheng, Xinyuan Gan, Naiming Wang, Hui Yang. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell. J. Semicond., 2016, 37(1): 014004. doi: 10.1088/1674-4926/37/1/014004

[11]

Zhang Lucheng, Shen Hui. Novel approach for characterizing the specific shunt resistance caused by the penetration of the front contact through the p–n junction in solar cell. J. Semicond., 2009, 30(7): 074007. doi: 10.1088/1674-4926/30/7/074007

[12]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[13]

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004

[14]

Utsa Das, Partha P. Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis. J. Semicond., 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

[15]

Pan Dai, Shulong Lu, Lian Ji, Wei He, Lifeng Bian, Hui Yang, M. Arimochi, H. Yoshida, S. Uchida, M. Ikeda. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy. J. Semicond., 2013, 34(10): 104006. doi: 10.1088/1674-4926/34/10/104006

[16]

Duofa Wang, Haizheng Tao, Xiujian Zhao, Meiyan Ji, Tianjin Zhang. Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification. J. Semicond., 2015, 36(2): 023006. doi: 10.1088/1674-4926/36/2/023006

[17]

Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun, Kaijian Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells. J. Semicond., 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010

[18]

Yurun Sun, Kuilong Li, Xulu Zeng. Influence of GaInP ordering on the performance of GaInP solar cells. J. Semicond., 2016, 37(7): 073001. doi: 10.1088/1674-4926/37/7/073001

[19]

Jiji Koshy, M. Soosen Samuel, Anoop Chandran, K. C. George. Correlated barrier hopping of CuO nanoparticles. J. Semicond., 2015, 36(12): 122003. doi: 10.1088/1674-4926/36/12/122003

[20]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

Search

Advanced Search >>

GET CITATION

F C Wan, F L Tang, H T Xue, W J Lu, Y D Feng, Z Y Rui. Effects of defect states on the performance of CuInGaSe2 solar cells[J]. J. Semicond., 2014, 35(2): 024011. doi: 10.1088/1674-4926/35/2/024011.

Export: BibTex EndNote

Article Metrics

Article views: 613 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 13 July 2013 Manuscript revised: 14 August 2013 Online: Published: 01 February 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误