J. Semicond. > Volume 35 > Issue 5 > Article Number: 054002

Effects of substrate characteristics on the passivation performance of ALD-Al2O3 thin film for high-efficiency solar cells

Zongcun Liang , , Dianlei Wang and Yanbin Zhu

+ Author Affilications + Find other works by these authors

PDF

Abstract: Atom layer deposition (ALD)-Al2O3 thin films are considered effective passivation layers for p-type silicon surfaces. A lower surface recombination rate was obtained through optimizing the deposition parameters. The effects of some of the basic substrate characteristics including material type, bulk resistivity and surface morphology on the passivation performance of ALD-Al2O3 are evaluated in this paper. Surface recombination velocities of 7.8 cm/s and 6.5 cm/s were obtained for p-type and n-type wafers without emitters, respectively. Substrates with bulk resistivity ranging from 1.5 to 4 Ω · cm were all great for such passivation films, and a higher implied Voc of 660 mV on the 3 Ω · cm substrate was achieved. A minority carrier lifetime (MCL) of nearly 10 μs higher was obtained for cells with a polished back surface compared to those with a textured surface, which indicates the necessity of the polishing process for high-efficiency solar cells. For n-type semi-finished solar cells, a lower effective front surface recombination velocity of 31.8 cm/s was acquired, implying the great potential of (ALD)-Al2O3 thin films for high-efficiency n-type solar cells.

Key words: atom layer deposition (ALD)-Al2O3passivationminority carrier lifetimesurface recombination velocitysolar cell

Abstract: Atom layer deposition (ALD)-Al2O3 thin films are considered effective passivation layers for p-type silicon surfaces. A lower surface recombination rate was obtained through optimizing the deposition parameters. The effects of some of the basic substrate characteristics including material type, bulk resistivity and surface morphology on the passivation performance of ALD-Al2O3 are evaluated in this paper. Surface recombination velocities of 7.8 cm/s and 6.5 cm/s were obtained for p-type and n-type wafers without emitters, respectively. Substrates with bulk resistivity ranging from 1.5 to 4 Ω · cm were all great for such passivation films, and a higher implied Voc of 660 mV on the 3 Ω · cm substrate was achieved. A minority carrier lifetime (MCL) of nearly 10 μs higher was obtained for cells with a polished back surface compared to those with a textured surface, which indicates the necessity of the polishing process for high-efficiency solar cells. For n-type semi-finished solar cells, a lower effective front surface recombination velocity of 31.8 cm/s was acquired, implying the great potential of (ALD)-Al2O3 thin films for high-efficiency n-type solar cells.

Key words: atom layer deposition (ALD)-Al2O3passivationminority carrier lifetimesurface recombination velocitysolar cell



References:

[1]

Hezel R, Jaeger K. Low-temperature surface passivation of silicon for solar cells. J Electrochem Soc, 1989, 136: 518

[2]

Wu Dawei, Jia Rui, Wu Deqi. Al2O3 passivation for crystalline silicon solar cells[J]. Micronanoelectron Technol, 2011, 48(8): 1671.

[3]

Liu J, Dieter T, Englert M. Al2O3 as surface passivation coating for c-Si solar cells by large-scale in-line sputtering[J]. 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2010: 1686.

[4]

Bähr M, Sperlich H P, Laades A. Influence of a thermally grown SiO2 interface on the passivation quality of PECVD AlOx-SiNx passivation layers for PERC solar cells[J]. 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2011: 2284.

[5]

Black L E, Provancha K M, McIntosh K R. Surface passivation of crystalline silicon by APCVD aluminium oxide[J]. 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2011: 1120.

[6]

Agostinelli G, Vitanov P, Alexieva Z. Surface passivation of silicon by means of negative charge dielectrics[J]. Proceedings of the 19th European PVSEC, WIP, Paris, 2004: 132.

[7]

Werner F, Veith B, Zielke D. Improved understanding of recombination at the Si/Al2O3 interface[J]. 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2010: 1121.

[8]

Hoex B, Heil S B S, Langereis E. Ultralow surface recombination of substrates passivated by plasma-assisted atomic layer deposited[J]. Appl Phys Lett, 2006, 89: 042112. doi: 10.1063/1.2240736

[9]

Terlinden N M, Dingemans G, van de Sanden M C M. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3[J]. Appl Phys Lett, 2010, 96: 112101. doi: 10.1063/1.3334729

[10]

Hoex B, Gielis J J H, van de Sanden M C M. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3[J]. J Appl Phys, 2008, 104: 113703. doi: 10.1063/1.3021091

[11]

Agostinelli G, Delabie A, Vitanov P. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge[J]. Sol Energ Mat Sol C, 2006, 90: 3438. doi: 10.1016/j.solmat.2006.04.014

[12]

Van Hemmen J L, Heil S B, Klootwijk J, et al. Plasma and thermal ALD of Al2O3 in a commercial 200 mm ALD reactor. J Electrochem Soc, 2007, 154: G165

[13]

Kessels W M, Hoex B, van de Sanden M C. Atomic layer deposition:prospects for solar cell manufacturing[J]. 33rd IEEE Photovoltaic Specialists Conference, San Diego, 2008.

[14]

Saint-Cast P, Kania D, Hofmann M. Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide[J]. Appl Phys Lett, 2009, 95: 151502. doi: 10.1063/1.3250157

[15]

Hoex B, Schmidt J, Pohl P. Silicon surface passivation by atomic layer deposited Al2O3[J]. J Appl Phys, 2008, 104: 044903. doi: 10.1063/1.2963707

[16]

Benick J, Hoex B, van de Sanden M C M. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters[J]. Appl Phys Lett, 2008, 92: 253504. doi: 10.1063/1.2945287

[17]

Schmidt J, Merkle A, Brendel R. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3[J]. Prog Photovoltaics, 2008, 16: 461. doi: 10.1002/pip.v16:6

[18]

Riikka L P. Surface chemistry of atomic layer deposition:a case study for the trimethylaluminum/water process[J]. J Appl Phys, 2005, 97: 121301. doi: 10.1063/1.1940727

[19]

Arafune K, Miki S, Matsutani R. Surface recombination of crystalline silicon substrates passivated by atomic-layer-deposited AlOx[J]. Jpn J Appl Phys, 2012, 51: 04D.

[20]

Cacciato A, Duerinckx F, Baert K. Industrial PERL-type Si solar cells with efficiencies exceeding 19.5%[J]. IEEE J Photovoltaics, 2013, 3(2): 628. doi: 10.1109/JPHOTOV.2012.2231725

[21]

Kranz C, Wyczanowski S, Dorn S, et al. Impact of the rear surface roughness on industrial-type perc solar cells. 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 2012

[22]

Dingemans G, Kessels W M M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells[J]. J Vac Sci Technol A, 2012, 30(4): 040802. doi: 10.1116/1.4728205

[23]

Green M A. Solar cells operating principles, technology and system applications. Translated by Di Dawei, Cao Shaoyang, Li Xiuwen, et al. Shanghai Jiaotong University Press, 2010: 48

[1]

Hezel R, Jaeger K. Low-temperature surface passivation of silicon for solar cells. J Electrochem Soc, 1989, 136: 518

[2]

Wu Dawei, Jia Rui, Wu Deqi. Al2O3 passivation for crystalline silicon solar cells[J]. Micronanoelectron Technol, 2011, 48(8): 1671.

[3]

Liu J, Dieter T, Englert M. Al2O3 as surface passivation coating for c-Si solar cells by large-scale in-line sputtering[J]. 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2010: 1686.

[4]

Bähr M, Sperlich H P, Laades A. Influence of a thermally grown SiO2 interface on the passivation quality of PECVD AlOx-SiNx passivation layers for PERC solar cells[J]. 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2011: 2284.

[5]

Black L E, Provancha K M, McIntosh K R. Surface passivation of crystalline silicon by APCVD aluminium oxide[J]. 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2011: 1120.

[6]

Agostinelli G, Vitanov P, Alexieva Z. Surface passivation of silicon by means of negative charge dielectrics[J]. Proceedings of the 19th European PVSEC, WIP, Paris, 2004: 132.

[7]

Werner F, Veith B, Zielke D. Improved understanding of recombination at the Si/Al2O3 interface[J]. 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2010: 1121.

[8]

Hoex B, Heil S B S, Langereis E. Ultralow surface recombination of substrates passivated by plasma-assisted atomic layer deposited[J]. Appl Phys Lett, 2006, 89: 042112. doi: 10.1063/1.2240736

[9]

Terlinden N M, Dingemans G, van de Sanden M C M. Role of field-effect on c-Si surface passivation by ultrathin (2-20 nm) atomic layer deposited Al2O3[J]. Appl Phys Lett, 2010, 96: 112101. doi: 10.1063/1.3334729

[10]

Hoex B, Gielis J J H, van de Sanden M C M. On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3[J]. J Appl Phys, 2008, 104: 113703. doi: 10.1063/1.3021091

[11]

Agostinelli G, Delabie A, Vitanov P. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge[J]. Sol Energ Mat Sol C, 2006, 90: 3438. doi: 10.1016/j.solmat.2006.04.014

[12]

Van Hemmen J L, Heil S B, Klootwijk J, et al. Plasma and thermal ALD of Al2O3 in a commercial 200 mm ALD reactor. J Electrochem Soc, 2007, 154: G165

[13]

Kessels W M, Hoex B, van de Sanden M C. Atomic layer deposition:prospects for solar cell manufacturing[J]. 33rd IEEE Photovoltaic Specialists Conference, San Diego, 2008.

[14]

Saint-Cast P, Kania D, Hofmann M. Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide[J]. Appl Phys Lett, 2009, 95: 151502. doi: 10.1063/1.3250157

[15]

Hoex B, Schmidt J, Pohl P. Silicon surface passivation by atomic layer deposited Al2O3[J]. J Appl Phys, 2008, 104: 044903. doi: 10.1063/1.2963707

[16]

Benick J, Hoex B, van de Sanden M C M. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters[J]. Appl Phys Lett, 2008, 92: 253504. doi: 10.1063/1.2945287

[17]

Schmidt J, Merkle A, Brendel R. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3[J]. Prog Photovoltaics, 2008, 16: 461. doi: 10.1002/pip.v16:6

[18]

Riikka L P. Surface chemistry of atomic layer deposition:a case study for the trimethylaluminum/water process[J]. J Appl Phys, 2005, 97: 121301. doi: 10.1063/1.1940727

[19]

Arafune K, Miki S, Matsutani R. Surface recombination of crystalline silicon substrates passivated by atomic-layer-deposited AlOx[J]. Jpn J Appl Phys, 2012, 51: 04D.

[20]

Cacciato A, Duerinckx F, Baert K. Industrial PERL-type Si solar cells with efficiencies exceeding 19.5%[J]. IEEE J Photovoltaics, 2013, 3(2): 628. doi: 10.1109/JPHOTOV.2012.2231725

[21]

Kranz C, Wyczanowski S, Dorn S, et al. Impact of the rear surface roughness on industrial-type perc solar cells. 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 2012

[22]

Dingemans G, Kessels W M M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells[J]. J Vac Sci Technol A, 2012, 30(4): 040802. doi: 10.1116/1.4728205

[23]

Green M A. Solar cells operating principles, technology and system applications. Translated by Di Dawei, Cao Shaoyang, Li Xiuwen, et al. Shanghai Jiaotong University Press, 2010: 48

[1]

Decheng Yang, Fang Lang, Zhuo Xu, Jinchao Shi, Gaofei Li, Zhiyan Hu, Jingfeng Xiong. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells. J. Semicond., 2014, 35(5): 052002. doi: 10.1088/1674-4926/35/5/052002

[2]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[3]

Li Chengzhan, Liu Dan, Zheng Yingkui, Liu Xinyu, Liu Jian, Wei Ke, He Zhijing. Performance Improvement of AlGaN/GaN HEMTs by Surface Treatment Prior to Si3N4 Passivation. J. Semicond., 2008, 29(2): 329.

[4]

Omeime Xerviar Esebamen. N+P photodetector characterization using the quasi-steady state photoconductance decay method. J. Semicond., 2012, 33(12): 123002. doi: 10.1088/1674-4926/33/12/123002

[5]

Qiao Hui, Xu Guoqing, Jia Jia, Li Xiangyang. Surface Passivation of Variable-Area HgCdTe Photovoltaic Detectors. J. Semicond., 2008, 29(7): 1383.

[6]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[7]

Duofa Wang, Haizheng Tao, Xiujian Zhao, Meiyan Ji, Tianjin Zhang. Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification. J. Semicond., 2015, 36(2): 023006. doi: 10.1088/1674-4926/36/2/023006

[8]

Xiang Zhang, Chunlai Huang, Lei Wang, Min Zhou. Collaborative R&D between multicrystalline silicon ingots and battery efficiency improvement—effect of shadow area in multicrystalline silicon ingots on cell efficiency. J. Semicond., 2018, 39(8): 083004. doi: 10.1088/1674-4926/39/8/083004

[9]

Fucheng Wan, Fuling Tang, Hongtao Xue, Wenjiang Lu, Yudong Feng, Zhiyuan Rui. Effects of defect states on the performance of CuInGaSe2 solar cells. J. Semicond., 2014, 35(2): 024011. doi: 10.1088/1674-4926/35/2/024011

[10]

Chen Xinliang, Xu Buheng, Xue Junming, Zhao Ying, Zhang Xiaodan, Geng Xinhua. ZnO Thin Film Growth by Metal Organic Chemical Vapor Deposition and Its Back Contact Application in Solar Cells. J. Semicond., 2005, 26(12): 2363.

[11]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[12]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[13]

Hui Hao, Xiao Chen, Zhengcheng Li, Yang Shen, Hu Wang, Yanfei Zhao, Rong Huang, Tong Liu, Jian Liang, Yuxin An, Qing Peng, Sunan Ding. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment. J. Semicond., 2019, 40(1): 012806. doi: 10.1088/1674-4926/40/1/012806

[14]

Xiaorang Tian, Peide Han, Guanchao Zhao, Rong Yang, Liwei Li, Yuan Meng, Ted Guo. Pyramid size control and morphology treatment for high-efficiency silicon heterojunction solar cells. J. Semicond., 2019, 40(3): 032703. doi: 10.1088/1674-4926/40/3/032703

[15]

Xin Tan, Yuanjie Lü, Guodong Gu, Li Wang, Shaobo Dun, Xubo Song, Hongyu Guo, Jiayun Yin, Shujun Cai, Zhihong Feng. High performance AlGaN/GaN HEMTs with AlN/SiNx passivation. J. Semicond., 2015, 36(7): 074008. doi: 10.1088/1674-4926/36/7/074008

[16]

S. Hariech, M. S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Genève, N. Attaf, H. Rinnert. Cadmium sulfide thin films growth by chemical bath deposition. J. Semicond., 2018, 39(3): 034004. doi: 10.1088/1674-4926/39/3/034004

[17]

Yu Cao, Jianjun Zhang, Tianwei Li, Zhenhua Huang, Jun Ma, Xu Yang, Jian Ni, Xinhua Geng, Ying Zhao. Effects of seed layer on the performance of microcrystalline silicon germaniumsolar cells. J. Semicond., 2013, 34(3): 034008. doi: 10.1088/1674-4926/34/3/034008

[18]

Haixiao Wang, Xinhe Zheng, Xinyuan Gan, Naiming Wang, Hui Yang. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell. J. Semicond., 2016, 37(1): 014004. doi: 10.1088/1674-4926/37/1/014004

[19]

Zhang Lucheng, Shen Hui. Novel approach for characterizing the specific shunt resistance caused by the penetration of the front contact through the p–n junction in solar cell. J. Semicond., 2009, 30(7): 074007. doi: 10.1088/1674-4926/30/7/074007

[20]

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004

Search

Advanced Search >>

GET CITATION

Z C Liang, D L Wang, Y B Zhu. Effects of substrate characteristics on the passivation performance of ALD-Al2O3 thin film for high-efficiency solar cells[J]. J. Semicond., 2014, 35(5): 054002. doi: 10.1088/1674-4926/35/5/054002.

Export: BibTex EndNote

Article Metrics

Article views: 615 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 09 September 2013 Manuscript revised: 15 November 2013 Online: Published: 01 May 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误