J. Semicond. > Volume 35 > Issue 5 > Article Number: 056001

A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene

Wenchao Min 1, 2, , , Hao Sun 1, , Qilian Zhang 1, , Zhiying Chen 3, , Yanhui Zhang 3, , Guanghui Yu 3, and Xiaowei Sun 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Superior graphene-metal contacts can improve the performance of graphene devices. We report on an experimental demonstration of Ge/Au/Ni/Au-based ohmic contact on graphene. The transfer length method (TLM) is adopted to measure the resistivity of graphene-metal contacts. We designed a process flow, which can avoid residual photoresist at the interface of metal and graphene. Additionally, rapid thermal annealing (RTA) at different temperatures as a post-processing method is studied to improve graphene-metal contact. The results reveal that the contact resistivity of graphene and Ge/Au/Ni/Au can reach 10-5 Ω· cm2 after RTA, and that 350℃ is optimum annealing temperature for the contact of graphene-Ge/Au/Ni/Au. This paper provides guidance for fabrication and applications of graphene devices.

Key words: ohmic contactgrapheneanneal

Abstract: Superior graphene-metal contacts can improve the performance of graphene devices. We report on an experimental demonstration of Ge/Au/Ni/Au-based ohmic contact on graphene. The transfer length method (TLM) is adopted to measure the resistivity of graphene-metal contacts. We designed a process flow, which can avoid residual photoresist at the interface of metal and graphene. Additionally, rapid thermal annealing (RTA) at different temperatures as a post-processing method is studied to improve graphene-metal contact. The results reveal that the contact resistivity of graphene and Ge/Au/Ni/Au can reach 10-5 Ω· cm2 after RTA, and that 350℃ is optimum annealing temperature for the contact of graphene-Ge/Au/Ni/Au. This paper provides guidance for fabrication and applications of graphene devices.

Key words: ohmic contactgrapheneanneal



References:

[1]

Novoselov K S, Gein A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666. doi: 10.1126/science.1102896

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nature Mater, 2007, 6(3): 652.

[3]

Castro A H, Guinea F, Novoselov K S. The electronic properties of graphene[J]. Rev Mordern Phys, 2009, 81: 109.

[4]

Moon J S, Curtis D, Hu M. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates[J]. IEEE Electron Device Lett, 2009, 30(6): 650. doi: 10.1109/LED.2009.2020699

[5]

Palacios T, Hsu A, Wang H. Applications of graphene devices in RF communications[J]. IEEE Commun Mag, 2010, 48(6): 122. doi: 10.1109/MCOM.2010.5473873

[6]

Dragoman M, Muller A A, Dragoman D. Terahertz antenna based on graphene[J]. J Appl Phys, 2010, 104313: 107.

[7]

Moon J S, Curtis D, Bui S. Top-gated epitaxial graphene FETs on Si-face SiC wafers with a peak transconductance of 600 mS/mm[J]. IEEE Electron Device Lett, 2010, 31(4): 260. doi: 10.1109/LED.2010.2040132

[8]

Balci O, Kocabas C. Rapid thermal annealing of graphene-metal contact[J]. Appl Phys Lett, 2012, 101(24): 243105. doi: 10.1063/1.4769817

[9]

Robinson J A, LaBella M, Zhu M. Contacting graphene[J]. Appl Phys Lett, 2011, 98(5): 053103. doi: 10.1063/1.3549183

[10]

Braslau N, Gunn J B, Staples J L. Metal-semiconductor contacts for GaAs bulk effect devices[J]. Solid-State Electron, 1967, 10(15): 138.

[11]

Giovannetti G, Khomyakov P A, Brocks G. Doping graphene with metal contacts[J]. Phys Rev Lett, 2008, 101: 026803. doi: 10.1103/PhysRevLett.101.026803

[12]

Moon J S, Antcliffe M, Seo H C. Ultra-low resistance ohmic contacts in graphene field effect transistors[J]. Appl Phys Lett, 2012, 100(20): 203512. doi: 10.1063/1.4719579

[13]

Berger H H. Contact resistance and contact resistivity[J]. J Electrochem Soc, 1972, 119(4): 507. doi: 10.1149/1.2404240

[14]

Nagashio K, Nishimura T, Kita K. Contact resistivity and current flow path at metal/graphene contact[J]. Appl Phys Lett, 2010, 97(14): 143514. doi: 10.1063/1.3491804

[15]

Li X S, Cai W W, An J H. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312. doi: 10.1126/science.1171245

[16]

Murrmann H, Widmann D. Current crowding on metal contacts to planar devices[J]. IEEE Trans Electron Devices, 1969, 16(12): 1022. doi: 10.1109/T-ED.1969.16904

[1]

Novoselov K S, Gein A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666. doi: 10.1126/science.1102896

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nature Mater, 2007, 6(3): 652.

[3]

Castro A H, Guinea F, Novoselov K S. The electronic properties of graphene[J]. Rev Mordern Phys, 2009, 81: 109.

[4]

Moon J S, Curtis D, Hu M. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates[J]. IEEE Electron Device Lett, 2009, 30(6): 650. doi: 10.1109/LED.2009.2020699

[5]

Palacios T, Hsu A, Wang H. Applications of graphene devices in RF communications[J]. IEEE Commun Mag, 2010, 48(6): 122. doi: 10.1109/MCOM.2010.5473873

[6]

Dragoman M, Muller A A, Dragoman D. Terahertz antenna based on graphene[J]. J Appl Phys, 2010, 104313: 107.

[7]

Moon J S, Curtis D, Bui S. Top-gated epitaxial graphene FETs on Si-face SiC wafers with a peak transconductance of 600 mS/mm[J]. IEEE Electron Device Lett, 2010, 31(4): 260. doi: 10.1109/LED.2010.2040132

[8]

Balci O, Kocabas C. Rapid thermal annealing of graphene-metal contact[J]. Appl Phys Lett, 2012, 101(24): 243105. doi: 10.1063/1.4769817

[9]

Robinson J A, LaBella M, Zhu M. Contacting graphene[J]. Appl Phys Lett, 2011, 98(5): 053103. doi: 10.1063/1.3549183

[10]

Braslau N, Gunn J B, Staples J L. Metal-semiconductor contacts for GaAs bulk effect devices[J]. Solid-State Electron, 1967, 10(15): 138.

[11]

Giovannetti G, Khomyakov P A, Brocks G. Doping graphene with metal contacts[J]. Phys Rev Lett, 2008, 101: 026803. doi: 10.1103/PhysRevLett.101.026803

[12]

Moon J S, Antcliffe M, Seo H C. Ultra-low resistance ohmic contacts in graphene field effect transistors[J]. Appl Phys Lett, 2012, 100(20): 203512. doi: 10.1063/1.4719579

[13]

Berger H H. Contact resistance and contact resistivity[J]. J Electrochem Soc, 1972, 119(4): 507. doi: 10.1149/1.2404240

[14]

Nagashio K, Nishimura T, Kita K. Contact resistivity and current flow path at metal/graphene contact[J]. Appl Phys Lett, 2010, 97(14): 143514. doi: 10.1063/1.3491804

[15]

Li X S, Cai W W, An J H. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312. doi: 10.1126/science.1171245

[16]

Murrmann H, Widmann D. Current crowding on metal contacts to planar devices[J]. IEEE Trans Electron Devices, 1969, 16(12): 1022. doi: 10.1109/T-ED.1969.16904

[1]

Zhu Yanling, Du Jiangfeng, Luo Muchang, Zhao Hong, Zhao Wenbo, Huang Lieyun, Ji Hong, Yu Qi, Yang Mohua. Ohmic Contacts to n-Type Al0.6Ga0.4N for Solar-Blind Detectors. J. Semicond., 2008, 29(9): 1661.

[2]

Yang Yan, Wang Wenbo, Hao Yue. Ohmic Contact to an AlGaN/GaN Heterostructure. J. Semicond., 2006, 27(10): 1823.

[3]

Liu Liang, Yin Junjian, Li Xiao, Zhang Haiying, Li Haiou, He Zhijing, Liu Xunchun. Ohmic Contact for InP-Based HEMTs. J. Semicond., 2006, 27(11): 1970.

[4]

Guodong Gu, Shaobo Dun, Yuanjie Lü, Tingting Han, Peng Xu, Jiayun Yin, Zhihong Feng. Low ohmic contact AlN/GaN HEMTs grown by MOCVD. J. Semicond., 2013, 34(11): 114004. doi: 10.1088/1674-4926/34/11/114004

[5]

Zhang Junqin, Yang Yintang, Chai Changchun, Li Yuejin, Jia Hujun. Ohmic Contact Property of Ti/Al/Ni/Au on AlGaN/GaN Heterostructures for Application in Ultraviolet Detectors. J. Semicond., 2008, 29(11): 2187.

[6]

Han Ru, Yang Yintang, Wang Ping, Cui Zhandong, Li Liang. Ohmic Contact Properties of Multi-Metal Films on n-Type 4H-SiC. J. Semicond., 2007, 28(2): 149.

[7]

Wang Chao, Zhang Yimen, Zhang Yuming, Guo Hui, Xu Daqing, Wang Yuehu. Formation of Nickel Based Ohmic Contact to High Energy Vanadium Implanted n-Type 4H-SiC. J. Semicond., 2007, 28(11): 1701.

[8]

Zhang Yuezong, Feng Shiwei, Zhang Gongchang, Wang Chengdong, Lü Changzhi. High Temperature Characteristics of Ti/Al/Ni/Au Multilayer Ohmic Contact to n-GaN. J. Semicond., 2007, 28(6): 984.

[9]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[10]

Yanxu Zhu, Weiwei Cao, Yuyu Fan, Ye Deng, Chen Xu. Effects of rapid thermal annealing on ohmic contact of AlGaN/GaN HEMTs. J. Semicond., 2014, 35(2): 026004. doi: 10.1088/1674-4926/35/2/026004

[11]

Guo Debo, Liang Meng, Fan Manning, Shi Hongwei, Liu Zhiqiang, Wang Guohong, Wang Liangchen. Effects of Surface Treatments on Ohmic Contact to p-GaN. J. Semicond., 2007, 28(11): 1811.

[12]

Linchao Han, Huajun Shen, Kean Liu, Yiyu Wang, Yidan Tang, Yun Bai, Hengyu Xu, Yudong Wu, Xinyu Liu. Improved adhesion and interface ohmic contact on n-type 4H-SiC substrate by using Ni/Ti/Ni. J. Semicond., 2014, 35(7): 072003. doi: 10.1088/1674-4926/35/7/072003

[13]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[14]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[15]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[16]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[17]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[18]

Yong Wang, Dandan Liu, Guoqing Feng, Zhen Ye, Zhanqi Gao, Xiaohua Wang. Effect of Pt diffusion barrier layer in Ni/AuGe/Pt/Au on ohmic contact to n-GaAs. J. Semicond., 2015, 36(3): 036002. doi: 10.1088/1674-4926/36/3/036002

[19]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[20]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

Search

Advanced Search >>

GET CITATION

W C Min, H Sun, Q L Zhang, Z Y Chen, Y H Zhang, G H Yu, X W Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene[J]. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001.

Export: BibTex EndNote

Article Metrics

Article views: 667 Times PDF downloads: 4 Times Cited by: 0 Times

History

Manuscript received: 25 October 2013 Manuscript revised: 18 November 2013 Online: Published: 01 May 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误