J. Semicond. > Volume 36 > Issue 10 > Article Number: 101001

Packaging investigation of optoelectronic devices

Zhike Zhang , Yu Liu , , Jianguo Liu and Ninghua Zhu

+ Author Affilications + Find other works by these authors

PDF

Abstract: Compared with microelectronic packaging, optoelectronic packaging as a new packaging type has been developed rapidly and it will play an essential role in optical communication.In this paper, we try to summarize the development history, research status, technology issues and future prospects, and hope to provide a meaningful reference.

Key words: optoelectronic packagingPICbutterfly packaging

Abstract: Compared with microelectronic packaging, optoelectronic packaging as a new packaging type has been developed rapidly and it will play an essential role in optical communication.In this paper, we try to summarize the development history, research status, technology issues and future prospects, and hope to provide a meaningful reference.

Key words: optoelectronic packagingPICbutterfly packaging



References:

[1]

Online . Principles of optoelectronic packaging[J]. .

[2]

Fischer U H P. Optoelectronic packaging[J]. John Wiley, 2002.

[3]

Miller S E. Integrated optics:an introduction[J]. Bell System Technical Journal, 1969, 48(7): 2059.

[4]

Online . WDM-the transmode way[J]. .

[5]

Sasaki T, Kitamura M, Hamamoto K. Semiconductor optical integrated circuits and method for fabricating the same[J]. USA Patent, US5770466, 1998.

[6]

Sato K. Multi-wavelength semiconductor laser array having phase-shift structures[J]. USA Patent, US6088374, 1998.

[7]

Kudo K. Method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device[J]. USA Patent, US6228670B1, 2001.

[8]

Sasaki T, Takeuchi T. Semiconductor photonic integrated circuit and fabrication process therefore[J]. USA Patent, US5703974, 1996.

[9]

Kato T. Optical integrated module[J]. USA Patent, US6556735B1, 1999.

[10]

Mazed M A. Techniques for fabricating and packaging multiwavelength semiconductor laser array devices (chips) and their applications in system architectures[J]. USA Patent, US6411642 B1, 2000.

[11]

Wiedmann J, Mazed M A, Eden R. Photonic integrated circuit[J]. USA Patent, US6775312 B2, 2002.

[12]

Ryu S W, Kim J H. Multi-wavelength semiconductor laser array and method for fabricating the same[J]. USA Patent, US6594298B2, 2003.

[13]

Forrest S R, Gokhale M R, Xia F. Photonic integrated circuits[J]. USA Patent, US6795622B2, 2002.

[14]

Joyner C H, Kish F A Jr, Peters F H. Transmitter photonic integrated circuit (TxPIC) chip with enhanced power and yield without on-chip amplification[J]. USA Patent, US7058246 B2, 2006.

[15]

Nagarajan R, Joyner C H, Schneider R P Jr. Large-scale photonic integrated circuits[J]. IEEE J Sel Topics Quantum Electron, 2005, 11(1): 50.

[16]

Little B E. Integrated optical mode shape transformer and method of fabrication[J]. USA Patent, US7359593B2, 2008.

[17]

Lin C, Yoffe G, Emanuel M. Monolithically integrated high speed DFB BH laser arrays for 10 Gbased LX4 application[J]. Optical Fiber Communication Conference, Optical Society of America, 2006.

[18]

Darja J, Chan M J, Sugiyama M. Four channel DFB laser array with integrated combiner for 1[J]. .

[19]

Fujisawa T, Kanazawa S, Nunoya N. 4×25-Gbit/s, 1[J]. .

[20]

Li J, Wang H, Chen X. Experimental demonstration of distributed feedback semiconductor lasers based on reconstructionequivalent-chirp technology[J]. Opt Express, 2009, 17: 5240.

[21]

Li J, Chen X, Zhou N. Monolithically integrated 30-wavelength DFB laser array[J]. Proc SPIE, 2009, 7631: 763104.

[22]

Shi Y, Li L, Zheng J. 16-wavelength DFB laser array with high channel-spacing uniformity based on equivalent phase-shift technique[J]. IEEE Photonics Journal, 2014, 6(6): 1.

[23]

Shi Y, Li S, Chen X. High channel count and high precision channel spacing multi-wavelength laser array for future PICs[J]. Scientific Reports, 2014, 4: 7377.

[24]

Chen X, Shi Y. High channel count DFB laser array with precise channel spacing for future PICs based on REC technique[J]. IEEE Optical Interconnects Conference (OI), 2015.

[25]

Zhu H, Xu X, Wang H. The fabrication of eight-channel DFB laser array using sampled gratings[J]. IEEE Photonics Technol Lett, 2010, 22: 353.

[26]

Zhang C, Liang S, Zhu H. The fabrication of 10-channel DFB laser array by SAG technology[J]. Opt Commun, 2013, 311(2): 6.

[27]

Zhang C, Liang S, Zhu H. Multichannel DFB laser arrays fabricated by upper SCH layer SAG technique[J]. IEEE J Quantum Electron, 2014, 50(2): 92.

[28]

Shih T T, Lin M C, Cheng W H. High-performance and low-cost 10 Gbps coaxial DFB laser module[J]. Electronic Components and Technology Conference, 2006: 1095.

[29]

Shih T T, Lin M C, Cheng W H. High-performance low-cost 10-Gb/s coaxial DFB laser module packaging by conventional TOCan materials and processes[J]. IEEE J Sel Topics Quantum Electron, 2006, 12(5): 1009.

[30]

Kobayashi W, Tsuzuki K, Tadokoro T. Large bandwidth TO-CAN module with LCP based transmission line as serial 40 Gb/s 1[J]. Semiconductor Laser Conference, 2010.

[31]

Xie L, Man J W, Wang B J. 24-GHz directly modulated DFB laser modules for analog applications[J]. IEEE Photonics Technol Lett, 2012, 24(5): 407.

[32]

Liu Y, Man J W, Han W. High-speed analog DFB laser module operated in direct modulation for Ku-band[J]. SPIE Semiconductor Lasers and Applications IV, 2010, 7844: 0P.

[33]

Pratt D J, Preston K R, Wisely D R. Four channel multiple wavelength laser transmitter module for 1550 nm WDM systems[J]. Electron Lett, 1992, 28(11): 1066.

[34]

Armiento C A, Negri A J, Tabasky M J. Gigabit transmitter array modules on silicon wafer board[J]. IEEE Trans Components, Hybrids, and Manufacturing Technology, 1992, 15(6): 1072.

[35]

Lemoff B E, Buckman L A, Schmit A J. A compact, lowcost WDM transceiver for the LAN[J]. Proceedings 50th IEEE Electronic Components & Technology Conference, 2000: 711.

[36]

Pezeshki B, Vail E, Kubicky J. 20-mW widely tunable laser module using DFB array and MEMS selection[J]. IEEE Photonics Technol Lett, 2002, 14(10): 1457.

[37]

Heanue J F, Vail E, Sherback M. Widely tunable laser module using DFB array and MEMs selection with internal wavelength locker[J]. Optical Fiber Communication Conference, Optical Society of America, 2003.

[38]

Tsuzuki K, Kawaguchi Y, Kondo S. Four-channel arrayed polarization-independent EA modulator with an IPF carrier operating at 10 Gb/s[J]. IEEE Photonics Technol Lett, 2000, 12(3): 281.

[39]

Suzaki Y, Yasaka H, Mawahri H. Beyond 80-Gbit/sthroughput monolithically integrated eight-channel WDM modulator module for multi-channel optical transmitter[J]. OFC/NFOEC, 2004.

[40]

Kish F A, Nagarajan R, Joyner C H. 100 Gb/s (10×l0 Gb/s) DWDM photonic integrated circuit transmitters and receivers[J]. Conference on Lasers & Electro-Optics (CLEO), CMGG3, 2005.

[41]

Kish F A Jr, Joyner C H, Welch D F. Transmitter photonic integrated circuit (TxPIC) chip architectures and drive systems and wavelength stabilization for TxPICs[J]. USA Patent, US7079715B2, 2002.

[42]

Kanazawa S, Fujisawa T, Ohki A. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver[J]. IEEE J Sel Topics Quantum Electron, 2011, 17(5): 1191.

[43]

Wang J S, Liu Y, Chen X F. Compact packaging for multi-wavelength DML TOSA[J]. Chinese Science Bulletin, 2014, 59(20): 2387.

[44]

Tekin T. Review of packaging of optoelectronic, photonic, and MEMS components[J]. IEEE J Sel Topics Quantum Electron, 2011, 17(3): 704.

[45]

Zhu N H, Liu Y, Zhang S J. Bonding-wire compensation effect on the packaging parasitics of optoelectronic devices[J]. Microwave and Optical Technology Letters, 2006, 48(1): 76.

[46]

Arahira S, Mineo N, Tachibana K. 40 GHz hybrid modelocked laser diode module operated at ultra-low RF power with impedance-matching circuit[J]. Electron Lett, 2003, 39(3): 287.

[47]

Schuster C, Kuchta D, Colgan E. Package design and measurement of 10 Gbps laser diode on high-speed silicon optical bench[J]. 12th IEEE Topical Meeting on Electrical Performance of Electronic Packaging (EPEP), Princeton, NJ, 2003: 63.

[48]

Zhang Z, Liu Y, Wang J. A 3D RF impedance matching circuit used to package of multi-channel parallel EML array[J]. IEEE 14th International Conference on Optical Communications and Networks (ICOCN), 2015: 1.

[49]

Lindgren S, Ahlfeldt H, Kerzar B. Packaging of high speed DFB laser diodes[J]. IEEE 22nd European Conference on Optical Communication, 1996, 1: 97.

[50]

Wu Z. Study on signal transmission performance of microwave multi-chip modules interconnect via hole structure[J]. IEEE13th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2012: 1352.

[51]

Varoutas D, Arapoyianni A, Sphicopoulos T. Modeling of electrical crosstalk in OEIC modules[J]. Fiber & Integrated Optics, 2005, 24(2): 91.

[52]

Kanazawa S, Fujisawa T, Nunoya N. Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission[J]. J Lightwave Technol, 2013, 31(4): 602.

[53]

Yao W, Gilardi G, Calabretta N. Experimental and numerical study of electrical crosstalk in photonic integrated circuits[J]. J Lightwave Technol, 2015, 33(4): 934.

[54]

Seki K, Kanazawa K, Yasunaga M. Crosstalk-noise reduction in GHz domain using segmental transmission line[J]. IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2013: 96.

[55]

Mbairi F D, Siebert W P, Hesselbom H. High-frequency transmission lines crosstalk reduction using spacing rules[J]. IEEE Trans Components & Packaging Technologies, 2008, 31(3): 601.

[56]

Shim Y, Dan O, Sun S. Characterization and analysis of vertical coupling impact on receiver performance in high speed serial interface[J]. IEEE 22nd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2013: 223.

[1]

Online . Principles of optoelectronic packaging[J]. .

[2]

Fischer U H P. Optoelectronic packaging[J]. John Wiley, 2002.

[3]

Miller S E. Integrated optics:an introduction[J]. Bell System Technical Journal, 1969, 48(7): 2059.

[4]

Online . WDM-the transmode way[J]. .

[5]

Sasaki T, Kitamura M, Hamamoto K. Semiconductor optical integrated circuits and method for fabricating the same[J]. USA Patent, US5770466, 1998.

[6]

Sato K. Multi-wavelength semiconductor laser array having phase-shift structures[J]. USA Patent, US6088374, 1998.

[7]

Kudo K. Method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device[J]. USA Patent, US6228670B1, 2001.

[8]

Sasaki T, Takeuchi T. Semiconductor photonic integrated circuit and fabrication process therefore[J]. USA Patent, US5703974, 1996.

[9]

Kato T. Optical integrated module[J]. USA Patent, US6556735B1, 1999.

[10]

Mazed M A. Techniques for fabricating and packaging multiwavelength semiconductor laser array devices (chips) and their applications in system architectures[J]. USA Patent, US6411642 B1, 2000.

[11]

Wiedmann J, Mazed M A, Eden R. Photonic integrated circuit[J]. USA Patent, US6775312 B2, 2002.

[12]

Ryu S W, Kim J H. Multi-wavelength semiconductor laser array and method for fabricating the same[J]. USA Patent, US6594298B2, 2003.

[13]

Forrest S R, Gokhale M R, Xia F. Photonic integrated circuits[J]. USA Patent, US6795622B2, 2002.

[14]

Joyner C H, Kish F A Jr, Peters F H. Transmitter photonic integrated circuit (TxPIC) chip with enhanced power and yield without on-chip amplification[J]. USA Patent, US7058246 B2, 2006.

[15]

Nagarajan R, Joyner C H, Schneider R P Jr. Large-scale photonic integrated circuits[J]. IEEE J Sel Topics Quantum Electron, 2005, 11(1): 50.

[16]

Little B E. Integrated optical mode shape transformer and method of fabrication[J]. USA Patent, US7359593B2, 2008.

[17]

Lin C, Yoffe G, Emanuel M. Monolithically integrated high speed DFB BH laser arrays for 10 Gbased LX4 application[J]. Optical Fiber Communication Conference, Optical Society of America, 2006.

[18]

Darja J, Chan M J, Sugiyama M. Four channel DFB laser array with integrated combiner for 1[J]. .

[19]

Fujisawa T, Kanazawa S, Nunoya N. 4×25-Gbit/s, 1[J]. .

[20]

Li J, Wang H, Chen X. Experimental demonstration of distributed feedback semiconductor lasers based on reconstructionequivalent-chirp technology[J]. Opt Express, 2009, 17: 5240.

[21]

Li J, Chen X, Zhou N. Monolithically integrated 30-wavelength DFB laser array[J]. Proc SPIE, 2009, 7631: 763104.

[22]

Shi Y, Li L, Zheng J. 16-wavelength DFB laser array with high channel-spacing uniformity based on equivalent phase-shift technique[J]. IEEE Photonics Journal, 2014, 6(6): 1.

[23]

Shi Y, Li S, Chen X. High channel count and high precision channel spacing multi-wavelength laser array for future PICs[J]. Scientific Reports, 2014, 4: 7377.

[24]

Chen X, Shi Y. High channel count DFB laser array with precise channel spacing for future PICs based on REC technique[J]. IEEE Optical Interconnects Conference (OI), 2015.

[25]

Zhu H, Xu X, Wang H. The fabrication of eight-channel DFB laser array using sampled gratings[J]. IEEE Photonics Technol Lett, 2010, 22: 353.

[26]

Zhang C, Liang S, Zhu H. The fabrication of 10-channel DFB laser array by SAG technology[J]. Opt Commun, 2013, 311(2): 6.

[27]

Zhang C, Liang S, Zhu H. Multichannel DFB laser arrays fabricated by upper SCH layer SAG technique[J]. IEEE J Quantum Electron, 2014, 50(2): 92.

[28]

Shih T T, Lin M C, Cheng W H. High-performance and low-cost 10 Gbps coaxial DFB laser module[J]. Electronic Components and Technology Conference, 2006: 1095.

[29]

Shih T T, Lin M C, Cheng W H. High-performance low-cost 10-Gb/s coaxial DFB laser module packaging by conventional TOCan materials and processes[J]. IEEE J Sel Topics Quantum Electron, 2006, 12(5): 1009.

[30]

Kobayashi W, Tsuzuki K, Tadokoro T. Large bandwidth TO-CAN module with LCP based transmission line as serial 40 Gb/s 1[J]. Semiconductor Laser Conference, 2010.

[31]

Xie L, Man J W, Wang B J. 24-GHz directly modulated DFB laser modules for analog applications[J]. IEEE Photonics Technol Lett, 2012, 24(5): 407.

[32]

Liu Y, Man J W, Han W. High-speed analog DFB laser module operated in direct modulation for Ku-band[J]. SPIE Semiconductor Lasers and Applications IV, 2010, 7844: 0P.

[33]

Pratt D J, Preston K R, Wisely D R. Four channel multiple wavelength laser transmitter module for 1550 nm WDM systems[J]. Electron Lett, 1992, 28(11): 1066.

[34]

Armiento C A, Negri A J, Tabasky M J. Gigabit transmitter array modules on silicon wafer board[J]. IEEE Trans Components, Hybrids, and Manufacturing Technology, 1992, 15(6): 1072.

[35]

Lemoff B E, Buckman L A, Schmit A J. A compact, lowcost WDM transceiver for the LAN[J]. Proceedings 50th IEEE Electronic Components & Technology Conference, 2000: 711.

[36]

Pezeshki B, Vail E, Kubicky J. 20-mW widely tunable laser module using DFB array and MEMS selection[J]. IEEE Photonics Technol Lett, 2002, 14(10): 1457.

[37]

Heanue J F, Vail E, Sherback M. Widely tunable laser module using DFB array and MEMs selection with internal wavelength locker[J]. Optical Fiber Communication Conference, Optical Society of America, 2003.

[38]

Tsuzuki K, Kawaguchi Y, Kondo S. Four-channel arrayed polarization-independent EA modulator with an IPF carrier operating at 10 Gb/s[J]. IEEE Photonics Technol Lett, 2000, 12(3): 281.

[39]

Suzaki Y, Yasaka H, Mawahri H. Beyond 80-Gbit/sthroughput monolithically integrated eight-channel WDM modulator module for multi-channel optical transmitter[J]. OFC/NFOEC, 2004.

[40]

Kish F A, Nagarajan R, Joyner C H. 100 Gb/s (10×l0 Gb/s) DWDM photonic integrated circuit transmitters and receivers[J]. Conference on Lasers & Electro-Optics (CLEO), CMGG3, 2005.

[41]

Kish F A Jr, Joyner C H, Welch D F. Transmitter photonic integrated circuit (TxPIC) chip architectures and drive systems and wavelength stabilization for TxPICs[J]. USA Patent, US7079715B2, 2002.

[42]

Kanazawa S, Fujisawa T, Ohki A. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver[J]. IEEE J Sel Topics Quantum Electron, 2011, 17(5): 1191.

[43]

Wang J S, Liu Y, Chen X F. Compact packaging for multi-wavelength DML TOSA[J]. Chinese Science Bulletin, 2014, 59(20): 2387.

[44]

Tekin T. Review of packaging of optoelectronic, photonic, and MEMS components[J]. IEEE J Sel Topics Quantum Electron, 2011, 17(3): 704.

[45]

Zhu N H, Liu Y, Zhang S J. Bonding-wire compensation effect on the packaging parasitics of optoelectronic devices[J]. Microwave and Optical Technology Letters, 2006, 48(1): 76.

[46]

Arahira S, Mineo N, Tachibana K. 40 GHz hybrid modelocked laser diode module operated at ultra-low RF power with impedance-matching circuit[J]. Electron Lett, 2003, 39(3): 287.

[47]

Schuster C, Kuchta D, Colgan E. Package design and measurement of 10 Gbps laser diode on high-speed silicon optical bench[J]. 12th IEEE Topical Meeting on Electrical Performance of Electronic Packaging (EPEP), Princeton, NJ, 2003: 63.

[48]

Zhang Z, Liu Y, Wang J. A 3D RF impedance matching circuit used to package of multi-channel parallel EML array[J]. IEEE 14th International Conference on Optical Communications and Networks (ICOCN), 2015: 1.

[49]

Lindgren S, Ahlfeldt H, Kerzar B. Packaging of high speed DFB laser diodes[J]. IEEE 22nd European Conference on Optical Communication, 1996, 1: 97.

[50]

Wu Z. Study on signal transmission performance of microwave multi-chip modules interconnect via hole structure[J]. IEEE13th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2012: 1352.

[51]

Varoutas D, Arapoyianni A, Sphicopoulos T. Modeling of electrical crosstalk in OEIC modules[J]. Fiber & Integrated Optics, 2005, 24(2): 91.

[52]

Kanazawa S, Fujisawa T, Nunoya N. Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission[J]. J Lightwave Technol, 2013, 31(4): 602.

[53]

Yao W, Gilardi G, Calabretta N. Experimental and numerical study of electrical crosstalk in photonic integrated circuits[J]. J Lightwave Technol, 2015, 33(4): 934.

[54]

Seki K, Kanazawa K, Yasunaga M. Crosstalk-noise reduction in GHz domain using segmental transmission line[J]. IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2013: 96.

[55]

Mbairi F D, Siebert W P, Hesselbom H. High-frequency transmission lines crosstalk reduction using spacing rules[J]. IEEE Trans Components & Packaging Technologies, 2008, 31(3): 601.

[56]

Shim Y, Dan O, Sun S. Characterization and analysis of vertical coupling impact on receiver performance in high speed serial interface[J]. IEEE 22nd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2013: 223.

[1]

Zhang Haipeng, Wang Qin, Sun Lingling, Gao Mingyu, Li Wenjun, Lü Youhua, Liu Guohua, Wang Jie. Device Structure and Fabricating Method for SOI LIGBT/LDMOSIntegrated with Anti-ESD Diode. J. Semicond., 2006, 27(S1): 279.

[2]

Yang Hua, Zhu Hongliang, Xie Hongyun, Zhao Lingjuan, Zhou Fan, Wang Wei. Low-Microwave Loss Coplanar Waveguides Fabricated on High-Resistivity Silicon Substrate. J. Semicond., 2006, 27(1): 1.

[3]

Fan Manning, Liang Meng, Wang Guohong. Packaging technology of LEDs for LCD backlights. J. Semicond., 2009, 30(7): 076002. doi: 10.1088/1674-4926/30/7/076002

[4]

Zhang Shangjian, Liu Jian, Wen Jimin, Zhu Ninghua. Analysis and Improvement on the High Frequency Effect of TO Packaging for Photodiodes. J. Semicond., 2005, 26(11): 2254.

[5]

Chen Zhaohui, Liu Yong, Liu Sheng. Comparison of the copper and gold wire bonding processes for LED packaging. J. Semicond., 2011, 32(2): 024011. doi: 10.1088/1674-4926/32/2/024011

[6]

Li Ming, Song Jing, Huang Qing’an, Tang Jieying. Thermally Induced Packaging Effect on the Resonant Frequencies of a Fixed-Fixed Beam. J. Semicond., 2008, 29(1): 157.

[7]

Cao Yuhan, Luo Le. Wafer level hermetic packaging based on Cu–Sn isothermal solidification technology. J. Semicond., 2009, 30(8): 086001. doi: 10.1088/1674-4926/30/8/086001

[8]

Song Li, Chuanbin Zeng, Jiajun Luo, Zhengsheng Han. The abnormal electrostatic discharge of a no-connect metal cover in a ceramic packaging device. J. Semicond., 2013, 34(8): 084007. doi: 10.1088/1674-4926/34/8/084007

[9]

Geng Fei, Ding Xiaoyun, Xu Gaowei, Luo Le. A wafer-level 3D packaging structure with Benzocyclobutene as a dielectric for multichip module fabrication. J. Semicond., 2009, 30(10): 106003. doi: 10.1088/1674-4926/30/10/106003

[10]

Linsong Zhou, Haibo Rao, Wei Wang, Xianlong Wan, Junyuan Liao, Xuemei Wang, Da Zhou, Qiaolin Lei. Self-adaptive phosphor coating technology for wafer-level scale chip packaging. J. Semicond., 2013, 34(5): 054010. doi: 10.1088/1674-4926/34/5/054010

[11]

Yuxi Ni, Xiaoyu Ma, Hongqi Jing, Suping Liu. Finite element analysis of expansion-matched submounts for high-power laser diodes packaging. J. Semicond., 2016, 37(6): 064005. doi: 10.1088/1674-4926/37/6/064005

[12]

Hu Jin, Du Lei, Zhuang Yiqi, He Liang, Bao Junlin, Huang Xiaojun, Chen Chunxia, Wei Tao. Noise as a Representation for CTR of Optoelectronic Coupled Devices. J. Semicond., 2007, 28(4): 597.

[13]

Hong Zhu, Yang Shen, Yanqing Li, Jianxin Tang. Recent advances in flexible and wearable organic optoelectronic devices. J. Semicond., 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011

[14]

K S Urmila, T A Namitha, J Rajani, R R Philip, B Pradeep. Optoelectronic properties and Seebeck coefficient in SnSe thin films. J. Semicond., 2016, 37(9): 093002. doi: 10.1088/1674-4926/37/9/093002

[15]

Zhu Haobo, Mao Luhong, Yu Changliang, Ma Liyuan. Sensitivity Design for a CMOS Optoelectronic Integrated Circuit Receiver. J. Semicond., 2007, 28(5): 676.

[16]

Liu Jinbin, Chen Hongda, Gao Peng, Pei Weihua, Sui Xiaohong. An Optoelectronic Pulse Frequency Modulation Circuitfor Retinal Prosthesis. J. Semicond., 2006, 27(4): 700.

[17]

Imran Murtaza, Ibrahim Qazi, Khasan S. Karimov. CuPc/C60 heterojunction thin film optoelectronic devices. J. Semicond., 2010, 31(6): 064005. doi: 10.1088/1674-4926/31/6/064005

[18]

Congxin Xia, Jingbo Li. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semicond., 2016, 37(5): 051001. doi: 10.1088/1674-4926/37/5/051001

[19]

Yu Changliang, Mao Luhong, Song Ruiliang, Zhu Haobo, Wang Rui, Wang Qian. Design and Implementation of an Optoelectronic Integrated Receiver in Standard CMOS Process. J. Semicond., 2007, 28(8): 1198.

[20]

Xinzhe Min, Pengchen Zhu, Shuai Gu, Jia Zhu. Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond., 2017, 38(1): 011004. doi: 10.1088/1674-4926/38/1/011004

Search

Advanced Search >>

GET CITATION

Z K Zhang, Y Liu, J G Liu, N H Zhu. Packaging investigation of optoelectronic devices[J]. J. Semicond., 2015, 36(10): 101001. doi: 10.1088/1674-4926/36/10/101001.

Export: BibTex EndNote

Article Metrics

Article views: 1524 Times PDF downloads: 40 Times Cited by: 0 Times

History

Manuscript received: 20 July 2015 Manuscript revised: Online: Published: 01 October 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误