J. Semicond. > Volume 36 > Issue 10 > Article Number: 104002

Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure

Zhongxin Zheng 1, 2, , Jiandong Sun 1, , Yu Zhou 1, , Zhipeng Zhang 1, and Hua Qin 1, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The broadband terahertz emission from drifting two-dimensional electron gas (2DEG) in an Al-GaN/GaN heterostructure at 6 K is reported.The devices are designed as THz plasmon emitters according to the Smith-Purcell effect and the 'shallow water' plasma instability mechanism in 2DEG.Plasmon excitation is excluded since no signature of electron-density dependent plasmon mode is observed.Instead, the observed THz emission is found to come from the heated lattice and/or the hot electrons.Simulated emission spectra of hot electrons taking into account the THz absorption in air and Fabry-Pérot interference agree well with the experiment.It is confirmed that a blackbody-like THz emission will inevitably be encountered in similar devices driven by a strong in-plane electric field.A conclusion is drawn that a more elaborate device design is required to achieve efficient plasmon excitation and THz emission.

Key words: two-dimensional electron gashot electronblackbody radiationplasmonFabry-Pérot cavity

Abstract: The broadband terahertz emission from drifting two-dimensional electron gas (2DEG) in an Al-GaN/GaN heterostructure at 6 K is reported.The devices are designed as THz plasmon emitters according to the Smith-Purcell effect and the 'shallow water' plasma instability mechanism in 2DEG.Plasmon excitation is excluded since no signature of electron-density dependent plasmon mode is observed.Instead, the observed THz emission is found to come from the heated lattice and/or the hot electrons.Simulated emission spectra of hot electrons taking into account the THz absorption in air and Fabry-Pérot interference agree well with the experiment.It is confirmed that a blackbody-like THz emission will inevitably be encountered in similar devices driven by a strong in-plane electric field.A conclusion is drawn that a more elaborate device design is required to achieve efficient plasmon excitation and THz emission.

Key words: two-dimensional electron gashot electronblackbody radiationplasmonFabry-Pérot cavity



References:

[1]

Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Mater, 2002, 1: 26.

[2]

Zhang X L, Lu C Z, Xie X S. Research on AlGaN/GaN HEMT[J]. Journal of Semiconductors, 2002, 24(8): 847.

[3]

Allen S J, Tusi D C, Logan R A. Observation of the twodimensional plasmon in silicon inversion layers[J]. Phys Rev Lett, 1977, 38: 980.

[4]

Tsui D C, Gornik E, Logan R A. Far infrared emission from plasma oscillations of Si inversion layers[J]. Solid State Commun, 1980, 35: 875.

[5]

Hirakawa K, Grayson M, Tsui D C. Blackbody radiation from hot two-dimensional electrons in AlxGa1-xAs/GaAs heterojunctions[J]. Phys Rev B, 1993, 47: 16651.

[6]

Meziani Y M, Handa H, Knap W. Room temperature terahertz emission from grating coupled two-dimensional plasmons[J]. Appl Phys Lett, 2008, 92: 201108.

[7]

Mikhailov S A. Plasma instability and amplification of electro-magnetic waves in low-dimensional electron systems[J]. Phys Rev B, 1998, 58: 1517.

[8]

Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by DC-current[J]. Phys Rev Lett, 1993, 71: 2465.

[9]

Zhou Y, Li X X, Tan R B. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor[J]. Journal of Semiconductors, 2013, 34: 022002.

[10]

Shalygin V A, Vorobjev L E, Firsov D A. Terahertz radiation emission by hot electrons from AlGaN/GaN heterostructure[J]. Acta Physica Polonica A, 2011, 119: 241.

[11]

Morkoc H, Strite S, Gao G B. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies[J]. J Appl Phys, 1994, 76: 1363.

[12]

Hopfel R A, Weimann G. Electron heating and free carrier absorption in GaAs/AlGaAs single heterostructures[J]. Appl Phys Lett, 1985, 46: 291.

[13]

Shalygin V A, Vorobjev L E, Firsov D A. Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field[J]. J Appl Phys, 2011, 109: 073108.

[14]

Zhong X H. Modern fundamental of optics[J]. Beijing:Peking University Press, 2003.

[15]

The am atmospheric model is developed at Smithsonian Astrophysical Observatory and is available at https://www. cfa[J]. .

[16]

Hirakawa K, Yamanaka K, Grayson M. Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0[J]. Appl Phys Lett, 1995, 67: 2326.

[1]

Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Mater, 2002, 1: 26.

[2]

Zhang X L, Lu C Z, Xie X S. Research on AlGaN/GaN HEMT[J]. Journal of Semiconductors, 2002, 24(8): 847.

[3]

Allen S J, Tusi D C, Logan R A. Observation of the twodimensional plasmon in silicon inversion layers[J]. Phys Rev Lett, 1977, 38: 980.

[4]

Tsui D C, Gornik E, Logan R A. Far infrared emission from plasma oscillations of Si inversion layers[J]. Solid State Commun, 1980, 35: 875.

[5]

Hirakawa K, Grayson M, Tsui D C. Blackbody radiation from hot two-dimensional electrons in AlxGa1-xAs/GaAs heterojunctions[J]. Phys Rev B, 1993, 47: 16651.

[6]

Meziani Y M, Handa H, Knap W. Room temperature terahertz emission from grating coupled two-dimensional plasmons[J]. Appl Phys Lett, 2008, 92: 201108.

[7]

Mikhailov S A. Plasma instability and amplification of electro-magnetic waves in low-dimensional electron systems[J]. Phys Rev B, 1998, 58: 1517.

[8]

Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by DC-current[J]. Phys Rev Lett, 1993, 71: 2465.

[9]

Zhou Y, Li X X, Tan R B. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor[J]. Journal of Semiconductors, 2013, 34: 022002.

[10]

Shalygin V A, Vorobjev L E, Firsov D A. Terahertz radiation emission by hot electrons from AlGaN/GaN heterostructure[J]. Acta Physica Polonica A, 2011, 119: 241.

[11]

Morkoc H, Strite S, Gao G B. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies[J]. J Appl Phys, 1994, 76: 1363.

[12]

Hopfel R A, Weimann G. Electron heating and free carrier absorption in GaAs/AlGaAs single heterostructures[J]. Appl Phys Lett, 1985, 46: 291.

[13]

Shalygin V A, Vorobjev L E, Firsov D A. Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field[J]. J Appl Phys, 2011, 109: 073108.

[14]

Zhong X H. Modern fundamental of optics[J]. Beijing:Peking University Press, 2003.

[15]

The am atmospheric model is developed at Smithsonian Astrophysical Observatory and is available at https://www. cfa[J]. .

[16]

Hirakawa K, Yamanaka K, Grayson M. Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0[J]. Appl Phys Lett, 1995, 67: 2326.

[1]

Li Chengzhan, Liu Jian, Liu Xinyu, Xue Lijun, Chen Xiaojuan, He Zhijing. Correlations Between an AlN Insert Layer and Current Collapse in AlGaN/GaN HEMTs. J. Semicond., 2006, 27(6): 1055.

[2]

Wang Chong, Zhang Jincheng, Hao Yue, Yang Yan. Degradation Under High-Field Stress and Effects of UV Irradiation on AlGaN/GaN HEMTs. J. Semicond., 2006, 27(8): 1436.

[3]

Zhou Qisheng, Cao Juncheng, Qi Ming, Lei Xiaolin. Phonon-induced magnetoresistance oscillations in a high-mobility quantum well. J. Semicond., 2010, 31(9): 092001. doi: 10.1088/1674-4926/31/9/092001

[4]

Tang Ning, Shen Bo, Wang Maojun, Yang Zhijian, Xu Ke, Zhang Guoyi, Gui Yongsheng, Zhu Bo, Guo Shaoling, Chu Junhao. Analysis of PTCDA/ITO Surface and Interface Using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. J. Semicond., 2006, 27(2): 235.

[5]

Lu Jianduo, Xu Bin. Giant magnetoresistance in a two-dimensional electron gas modulated by ferromagnetic and Schottky metal stripes. J. Semicond., 2012, 33(7): 074007. doi: 10.1088/1674-4926/33/7/074007

[6]

Xu Wen. Quantum and Transport Mobilities of a Two-Dimensional Electron Gas in the Presence of the Rashba Spin-Orbit Interaction. J. Semicond., 2006, 27(2): 204.

[7]

Zhao Jianzhi, Lin Zhaojun, Lü Yuanjie, Corrigan Timothy D, Meng Lingguo, Zhang Yu, Wang Zhanguo, Chen Hong. Influence of Ni Schottky contact thickness on two-dimensional electron-gas sheet carrier concentration of strained Al0.3Ga0.7N/GaN heterostructures. J. Semicond., 2010, 31(8): 084007. doi: 10.1088/1674-4926/31/8/084007

[8]

Yun Kang, Sheng Wang, Xianli Li. Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. J. Semicond., 2015, 36(3): 032003. doi: 10.1088/1674-4926/36/3/032003

[9]

Xue Fangshi. Hot Electron Tunneling Mechanism of Current Collapse in GaN HFET. J. Semicond., 2005, 26(11): 2143.

[10]

Aritra Acharyya. Hot electron transport in wurtzite-GaN: effects of temperature and doping concentration. J. Semicond., 2018, 39(7): 072002. doi: 10.1088/1674-4926/39/7/072002

[11]

Sun Weifeng, Ye Zhizhen, Zhu Liping, Zhao Binghui. Application of a SiGe Multi-Quantum Well Grown by UHV-CVDfor Thermophotovoltaic Cells. J. Semicond., 2005, 26(11): 2111.

[12]

Zhang Jincheng, Wang Chong, Yang Yan, Zhang, Zhang Jinfeng, Feng Qian, Li Peixian. Effect of an AlN Spacer Layer on AlGaN/GaN HEMTs. J. Semicond., 2005, 26(12): 2396.

[13]

Hanming Zhou, Xiao Lin, Hongwei Guo, Shisheng Lin, Yiwei Sun, Yang Xu. Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions. J. Semicond., 2017, 38(3): 033002. doi: 10.1088/1674-4926/38/3/033002

[14]

Zeng Tao, Hu Yuehui, Chen Guanghua. Preparation of Microcrystalline Silicon Films by Layer-by-Layer Growth Technology and Hydrogen Plasma Treatment on the Stacking Layers in Hot-Wire-Assisted Microwave Electron-Cyclotron-Resonance Chemical Vapor Deposition System. J. Semicond., 2007, 28(8): 1237.

[15]

Yuede Yang, Shaoshuai Sui, Mingying Tang, Jinlong Xiao, Yun Du, Andrew W. Poon, Yongzhen Huang. Hybrid AlGaInAs/Si Fabry–Pérot lasers with near-total mode confinements. J. Semicond., 2018, 39(8): 084001. doi: 10.1088/1674-4926/39/8/084001

[16]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[17]

Hao Huijuan, Zhang Yulin, Lu Wenjuan, Wei Qiang. Three-Dimensional Fabrication by Electron Beam Lithography Using Overlapped Increment Scanning. J. Semicond., 2006, 27(7): 1326.

[18]

Liqin Hu, Dian Zhang, Hailong Hu, Tailiang Guo. Field electron emission from structure-controlled one-dimensional CuO arrays synthesized by wet chemical process. J. Semicond., 2014, 35(7): 073003. doi: 10.1088/1674-4926/35/7/073003

[19]

Xue Lijun, Xia Yang, Liu Ming, Wang Yan, Shao Xue, Lu Jing, Ma Jie, Xie Changqing, Yu Zhiping. Two-Dimensional Static Numerical Modeling and Simulation of AlGaN/GaN HEMT. J. Semicond., 2006, 27(2): 298.

[20]

Cheng Jia, Zhu Yu, Wang Jinsong. Two-Dimensional Discharge Simulation of InductivelyCoupled Plasma Etcher. J. Semicond., 2007, 28(6): 989.

Search

Advanced Search >>

GET CITATION

Z X Zheng, Jiandong Sun and O N Sun, Y Zhou, Z P Zhang, H Qin. Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure[J]. J. Semicond., 2015, 36(10): 104002. doi: 10.1088/1674-4926/36/10/104002.

Export: BibTex EndNote

Article Metrics

Article views: 283 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 08 April 2015 Manuscript revised: Online: Published: 01 October 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误