J. Semicond. > Volume 36 > Issue 10 > Article Number: 104004

Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode

Jingming Chen , Bin Shu , Jibao Wu , Linxi Fan , Heming Zhang , Huiyong Hu , Rongxi Xuan and Jianjun Song

+ Author Affilications + Find other works by these authors

PDF

Abstract: Ge has become a promising material for Si-based optoelectronic integrated circuits (OEIC) due to its pseudo-direct bandgap.In this paper we achieved tensilely strained Ge free-standing nanomembrane (NM) lightemitting diode (LED), using silicon nitride thin film with high stress.The tensile stress in the Ge layer can be controlled by adjustable process parameters.An expected redshift of electroluminescence (EL) in Ge NM LED is observed at room temperature, which has been attributed to the shrinking of its direct bandgap relative to its indirect bandgap.An EL with dramatically increased intensity was observed around 1876 nm at a tensile strain of 1.92%, which demonstrates the direct-band recombination in tensilely strained Ge NM.

Key words: electroluminescencelight-emitting diodestensilely strained germaniumfree-standing nanomembrane

Abstract: Ge has become a promising material for Si-based optoelectronic integrated circuits (OEIC) due to its pseudo-direct bandgap.In this paper we achieved tensilely strained Ge free-standing nanomembrane (NM) lightemitting diode (LED), using silicon nitride thin film with high stress.The tensile stress in the Ge layer can be controlled by adjustable process parameters.An expected redshift of electroluminescence (EL) in Ge NM LED is observed at room temperature, which has been attributed to the shrinking of its direct bandgap relative to its indirect bandgap.An EL with dramatically increased intensity was observed around 1876 nm at a tensile strain of 1.92%, which demonstrates the direct-band recombination in tensilely strained Ge NM.

Key words: electroluminescencelight-emitting diodestensilely strained germaniumfree-standing nanomembrane



References:

[1]

Richard S. The past, present, and future of silicon photonics[J]. IEEE J Sel Top Quantum Electron, 2006, 12: 1678.

[2]

Liu J F, Sun X C, Becla P. Towards a Ge-based laser for CMOS applications[J]. 5th IEEE International Conference on Group IV Photonics, 2008: 16.

[3]

Lim P H, Park S, Ishikawa Y. Enhanced direct bandgap emission in germanium by micromechanical strain engineering[J]. Opt Express, 2009, 17: 16360.

[4]

Liu J F, Sun X C, Pan D. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si[J]. Opt Express, 2007, 15: 11272.

[5]

Kurdi M El, Fishman G, Sauvage S. Band structure and optical gain of tensile-strained germanium based on a 30 band k p formalism[J]. J Appl Phys, 2010, 107: 013710.

[6]

Huo Y J, Lin H, Rong Y W. Direct band gap tensile-strained germanium[J]. Conference on Lasers and Electro-Optics, 2009: 1.

[7]

Kurdi M El, Berlin H, Martincic E. Control of direct band gap emission of bulk germanium by mechanical tensile strain[J]. Appl Phys Lett, 2010, 96: 041909.

[8]

Liu J F, Sun X C, Camacho-Aguilera R. Ge-on-Si laser operating at room temperature[J]. Opt Lett, 2010, 35: 679.

[9]

Liu J F, Rodolfo E, Camacho-Aguilera R. Ge laser and onchip electronic-photonic integration[J]. Opto-Electronics and Communications Conference, 2012: 277.

[10]

Oda K, Okumura T, Tani K. Improvement of photoluminescence from Ge layer with patterned Si3N4 stressor[J]. Thin Solid Films, 2014, 557: 355.

[11]

Shu B, Chen J M, Zhang H M. Highly strained silicon nitride thin film deposited by PECVD[J]. Adv Mater Research, 2014, 936: 255.

[12]

Jose R S, Cicek B, Feng C. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes[J]. PNAS, 2011, 104: 18893.

[1]

Richard S. The past, present, and future of silicon photonics[J]. IEEE J Sel Top Quantum Electron, 2006, 12: 1678.

[2]

Liu J F, Sun X C, Becla P. Towards a Ge-based laser for CMOS applications[J]. 5th IEEE International Conference on Group IV Photonics, 2008: 16.

[3]

Lim P H, Park S, Ishikawa Y. Enhanced direct bandgap emission in germanium by micromechanical strain engineering[J]. Opt Express, 2009, 17: 16360.

[4]

Liu J F, Sun X C, Pan D. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si[J]. Opt Express, 2007, 15: 11272.

[5]

Kurdi M El, Fishman G, Sauvage S. Band structure and optical gain of tensile-strained germanium based on a 30 band k p formalism[J]. J Appl Phys, 2010, 107: 013710.

[6]

Huo Y J, Lin H, Rong Y W. Direct band gap tensile-strained germanium[J]. Conference on Lasers and Electro-Optics, 2009: 1.

[7]

Kurdi M El, Berlin H, Martincic E. Control of direct band gap emission of bulk germanium by mechanical tensile strain[J]. Appl Phys Lett, 2010, 96: 041909.

[8]

Liu J F, Sun X C, Camacho-Aguilera R. Ge-on-Si laser operating at room temperature[J]. Opt Lett, 2010, 35: 679.

[9]

Liu J F, Rodolfo E, Camacho-Aguilera R. Ge laser and onchip electronic-photonic integration[J]. Opto-Electronics and Communications Conference, 2012: 277.

[10]

Oda K, Okumura T, Tani K. Improvement of photoluminescence from Ge layer with patterned Si3N4 stressor[J]. Thin Solid Films, 2014, 557: 355.

[11]

Shu B, Chen J M, Zhang H M. Highly strained silicon nitride thin film deposited by PECVD[J]. Adv Mater Research, 2014, 936: 255.

[12]

Jose R S, Cicek B, Feng C. Direct-bandgap light-emitting germanium in tensilely strained nanomembranes[J]. PNAS, 2011, 104: 18893.

[1]

Shaolan Li, Lichun Zhang. Improvement of the electroluminescence performance of ZnO nanorods/p-GaN light emitting diodes with a ZnO films interlayer. J. Semicond., 2013, 34(11): 114010. doi: 10.1088/1674-4926/34/11/114010

[2]

Jiang Weiwei, Zhao Suling, Zhang Fujun, Xu Zheng. Luminescence Characteristics of a Blue-Green Emission Thin Film Electroluminescence Device Based on a ZnSe Emitting Layer. J. Semicond., 2008, 29(4): 754.

[3]

Pingbo An, Li Wang, Hongxi Lu, Zhiguo Yu, Lei Liu, Xin Xi, Lixia Zhao, Junxi Wang, Jinmin Li. Evaluation of light extraction efficiency for the light-emitting diodes based on the transfer matrix formalism and ray-tracing method. J. Semicond., 2016, 37(6): 064015. doi: 10.1088/1674-4926/37/6/064015

[4]

Wen Jing, Wen Yumei, Li Ping, Li Lian. Current–voltage characteristics of light-emitting diodes under optical and electrical excitation. J. Semicond., 2011, 32(8): 084004. doi: 10.1088/1674-4926/32/8/084004

[5]

Huamao Huang, Jinyong Hu, Hong Wang. GaN-based light-emitting diodes with hybrid micro/nano-textured indium-tin-oxide layer. J. Semicond., 2014, 35(8): 084006. doi: 10.1088/1674-4926/35/8/084006

[6]

Li Zhicong, Li Panpan, Wang Bing, Li Hongjian, Liang Meng, Yao Ran, Li Jing, Deng Yuanming, Yi Xiaoyan, Wang Guohong, Li Jinmin. Improved III-nitrides based light-emitting diodes anti-electrostatic discharge capacity with an AlGaN/GaN stack insert layer. J. Semicond., 2011, 32(11): 114007. doi: 10.1088/1674-4926/32/11/114007

[7]

Yan Lei, Zhiqiang Liu, Miao He, Xiaoyan Yi, Junxi Wang, Jinmin Li, Shuwen Zheng, Shuti Li. Enhancement of blue InGaN light-emitting diodes by using AlGaN increased composition-graded barriers. J. Semicond., 2015, 36(5): 054006. doi: 10.1088/1674-4926/36/5/054006

[8]

Chen Zhizhong, Xu Ke, Qin Zhixin, Yu Tongjun, Tong Yuzhen, Song Jinde, Lin Liang, Liu Peng, Qi Shengli, Zhang Guoyi. Origins of Double Emission Peaks in Electroluminescence Spectrum from InGaN/GaN MQW LED. J. Semicond., 2007, 28(7): 1121.

[9]

Xiao Wenbo, He Xingdao, Gao Yiqing, Zhang Zhimin, Liu Jiangtao. Far-infrared electroluminescence characteristics of an InGaP/InGaAs/Ge triple-junction solar cell under forward DC bias. J. Semicond., 2012, 33(6): 064008. doi: 10.1088/1674-4926/33/6/064008

[10]

Ye Zhizhen, Zhang Liqiang, Huang Jingyun, Zhang Yinzhu, Zhu Liping, Lü Bin, Lü Jianguo, Wang Lei, Jin Yizheng, Jiang Jie, Xue Ya, Zhang Jun, Lin Shisheng, Yang Dan. Room-temperature electroluminescence of p-ZnxMg1-xO:Na/n-ZnO p-n junction light emitting diode. J. Semicond., 2009, 30(8): 081001. doi: 10.1088/1674-4926/30/8/081001

[11]

A. K. Mishra, S. K. Mishra, S. P. Pandey, Kshama Lakshmi Mishra. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. J. Semicond., 2018, 39(2): 022001. doi: 10.1088/1674-4926/39/2/022001

[12]

Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002

[13]

Dongxue Wu, Ping Ma, Boting Liu, Shuo Zhang, Junxi Wang, Jinmin Li. Increased effective reflection and transmission at the GaN-sapphire interface of LEDs grown on patterned sapphire substrates. J. Semicond., 2016, 37(10): 104003. doi: 10.1088/1674-4926/37/10/104003

[14]

Qiu Yong, Duan Lian. Organic electroluminescence display technology and Organic semiconductors. J. Semicond., 2003, 24(S1): 209.

[15]

Nie Hai, Tang Xianzhong, Chen Zhu, Wu Lijuan. An Electroluminescence and Emission Mechanism for Small Molecular Doped Polymer Light-Emitting Diodes. J. Semicond., 2008, 29(8): 1575.

[16]

Ye Zhizhen, Lin Shisheng, He Haiping, Gu Xiuquan, Chen Lingxiang, Lü Jianguo, Huang Jingyun, Zhu Liping, Wang Lei, Zhang Yinzhu, Li Xianhang. Room Temperature Blue-UV Electroluminescence from ZnO Light-Emitting Diodes Involving Na-Doped p-Type ZnO and ZnO/ZnMgO Multi-Quantum Wells. J. Semicond., 2008, 29(8): 1433.

[17]

Hu Weiguo, Wei Hongyuan, Jiao Chunmei, Kang Tingting, Zhang Riqing, Liu Xianglin. Growth of Free-Standing AlN Nanocrystals on Nanorod ZnO Template. J. Semicond., 2007, 28(10): 1508.

[18]

Satoshi Kamiyama, Motoaki Iwaya, Tetsuya Takeuchi, Isamu Akasaki, Mikael Syvajarvi, Rositza Yakimova. Fluorescent SiC and its application to white light-emitting diodes. J. Semicond., 2011, 32(1): 013004. doi: 10.1088/1674-4926/32/1/013004

[19]

Zhao Si, Tongbo Wei, Ning Zhang, Jun Ma, Junxi Wang, Jinmin Li. Improvement of carrier distribution in dual wavelength light-emitting diodes. J. Semicond., 2013, 34(5): 054008. doi: 10.1088/1674-4926/34/5/054008

[20]

Cheng Cheng, Yan Lei, Zhiqiang Liu, Miao He, Zhi Li, Xiaoyan Yi, Junxi Wang, Jinmin Li, Deping Xiong. Performance improvement of light-emitting diodes with double superlattices confinement layer. J. Semicond., 2018, 39(11): 114005. doi: 10.1088/1674-4926/39/11/114005

Search

Advanced Search >>

GET CITATION

J M Chen, B Shu, J B Wu, L X Fan, H M Zhang, H Y Hu, R X Xuan, J J Song. Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode[J]. J. Semicond., 2015, 36(10): 104004. doi: 10.1088/1674-4926/36/10/104004.

Export: BibTex EndNote

Article Metrics

Article views: 533 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 05 March 2015 Manuscript revised: Online: Published: 01 October 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误