J. Semicond. > Volume 36 > Issue 2 > Article Number: 023006

Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification

Duofa Wang 1, 2, , Haizheng Tao 1, , , Xiujian Zhao 1, , Meiyan Ji 2, and Tianjin Zhang 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A TiO2/P3HT hybrid solar cell was fabricated by infiltrating P3HT into the pores of TiO2 nanorod arrays. To further enhance the photovoltaic performance, anthracene-9-carboxylic acid was employed to modify the interface of TiO2/P3HT before P3HT was coated. Results revealed that the interface treatment significantly enhances the photovoltaic performance of the cell. The efficiency of the hybrid solar cells reaches 0.28% after interface modification, which is three times higher compared with the un-modified one. We find that except for the increased exciton dissociation efficiency recognized by the previous reports, the suppressing of electron back recombination is another important factor leading to the enhanced photovoltaic performance.

Key words: TiO2solar cellinterface modification

Abstract: A TiO2/P3HT hybrid solar cell was fabricated by infiltrating P3HT into the pores of TiO2 nanorod arrays. To further enhance the photovoltaic performance, anthracene-9-carboxylic acid was employed to modify the interface of TiO2/P3HT before P3HT was coated. Results revealed that the interface treatment significantly enhances the photovoltaic performance of the cell. The efficiency of the hybrid solar cells reaches 0.28% after interface modification, which is three times higher compared with the un-modified one. We find that except for the increased exciton dissociation efficiency recognized by the previous reports, the suppressing of electron back recombination is another important factor leading to the enhanced photovoltaic performance.

Key words: TiO2solar cellinterface modification



References:

[1]

Grätzel M. Recent advances in sensitized mesoscopic solar cells[J]. Acc Chem Res, 2009, 42: 1788.

[2]

Peet J, Heeger A J, Bazan G C. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation[J]. Acc Chem Res, 2009, 42: 1700.

[3]

Liao W P, Hsu S C, Lin W H. Hierarchical TiO2 nanostructured array/P3HT hybrid solar cells with interfacial modification[J]. J Phys Chem C, 2012, 116: 15938.

[4]

Wang J Y, Zhang T J, Wang D F. Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer[J]. J Alloys Compd, 2013, 551: 82.

[5]

Zaban A, Greenshtein M, Bisquert J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements[J]. Chem Phys Chem, 2003, 4: 859.

[6]

Wang Q, Moser J E, Grätzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells[J]. J Phys Chem B, 2005, 109: 14945.

[7]

Spoerke E D, Lloyd M T, McCready E M. Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide[J]. Appl Phys Lett, 2009, 95: 213506.

[8]

Mishra D K, Ting J M. Surface study of chemically modified TiO2 films for use in low temperature dye-sensitised solar cells[J]. J Alloys Comp, 2013, 561: 33.

[9]

Chang J A, Rhee J H, Im S H. High-performance nanostructured inorganic-organic heterojunction solar cells[J]. Nano Lett, 2010, 10: 2609.

[10]

Takanezawa K, Tajima K, Hashimoto K. Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer[J]. Appl Phys Lett, 2008, 93: 063308.

[11]

Weickert J, Dunbar R B, Hesse H C. nanostructured organic and hybrid solar cells[J]. Adv Mater, 2011, 23: 1810.

[12]

Fu N Q, Duan Y D, Fang Y Y. Plastic dye-sensitized solar cells with enhanced performance prepared from a printable TiO2 paste[J]. Electrochem Commun, 2013, 34: 354.

[13]

Weickert J, Dunbar R B, Hesse H C. Nanostructured organic and hybrid solar cells[J]. Adv Mater, 2011, 23: 1810.

[14]

Zhu C G, Pan X H, Ye C L. Effect of CdSe quantum dots on the performance of hybrid solar cells based on ZnO nanorod arrays[J]. Ceram Int, 2013, 39: 2975.

[15]

Moon S J, Baranoff E, Zakeeruddin S M. Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye[J]. Chem Commun, 2011, 47: 8244.

[16]

Liu J C, Wang W L, Yu H Z. Surface ligand effects in MEH-PPV/TiO2 hybrid solar cells[J]. Sol Energy Mater Sol Cells, 2008, 92: 1403.

[17]

Kamat P V. Photosensitized reduction in a colloidal TiO2 system using anthracene-9-carboxylic acid as the sensitizer[J]. J Phys Chem, 1989, 93: 859.

[1]

Grätzel M. Recent advances in sensitized mesoscopic solar cells[J]. Acc Chem Res, 2009, 42: 1788.

[2]

Peet J, Heeger A J, Bazan G C. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation[J]. Acc Chem Res, 2009, 42: 1700.

[3]

Liao W P, Hsu S C, Lin W H. Hierarchical TiO2 nanostructured array/P3HT hybrid solar cells with interfacial modification[J]. J Phys Chem C, 2012, 116: 15938.

[4]

Wang J Y, Zhang T J, Wang D F. Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer[J]. J Alloys Compd, 2013, 551: 82.

[5]

Zaban A, Greenshtein M, Bisquert J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements[J]. Chem Phys Chem, 2003, 4: 859.

[6]

Wang Q, Moser J E, Grätzel M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells[J]. J Phys Chem B, 2005, 109: 14945.

[7]

Spoerke E D, Lloyd M T, McCready E M. Improved performance of poly(3-hexylthiophene)/zinc oxide hybrid photovoltaics modified with interfacial nanocrystalline cadmium sulfide[J]. Appl Phys Lett, 2009, 95: 213506.

[8]

Mishra D K, Ting J M. Surface study of chemically modified TiO2 films for use in low temperature dye-sensitised solar cells[J]. J Alloys Comp, 2013, 561: 33.

[9]

Chang J A, Rhee J H, Im S H. High-performance nanostructured inorganic-organic heterojunction solar cells[J]. Nano Lett, 2010, 10: 2609.

[10]

Takanezawa K, Tajima K, Hashimoto K. Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer[J]. Appl Phys Lett, 2008, 93: 063308.

[11]

Weickert J, Dunbar R B, Hesse H C. nanostructured organic and hybrid solar cells[J]. Adv Mater, 2011, 23: 1810.

[12]

Fu N Q, Duan Y D, Fang Y Y. Plastic dye-sensitized solar cells with enhanced performance prepared from a printable TiO2 paste[J]. Electrochem Commun, 2013, 34: 354.

[13]

Weickert J, Dunbar R B, Hesse H C. Nanostructured organic and hybrid solar cells[J]. Adv Mater, 2011, 23: 1810.

[14]

Zhu C G, Pan X H, Ye C L. Effect of CdSe quantum dots on the performance of hybrid solar cells based on ZnO nanorod arrays[J]. Ceram Int, 2013, 39: 2975.

[15]

Moon S J, Baranoff E, Zakeeruddin S M. Enhanced light harvesting in mesoporous TiO2/P3HT hybrid solar cells using a porphyrin dye[J]. Chem Commun, 2011, 47: 8244.

[16]

Liu J C, Wang W L, Yu H Z. Surface ligand effects in MEH-PPV/TiO2 hybrid solar cells[J]. Sol Energy Mater Sol Cells, 2008, 92: 1403.

[17]

Kamat P V. Photosensitized reduction in a colloidal TiO2 system using anthracene-9-carboxylic acid as the sensitizer[J]. J Phys Chem, 1989, 93: 859.

[1]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[2]

Fucheng Wan, Fuling Tang, Hongtao Xue, Wenjiang Lu, Yudong Feng, Zhiyuan Rui. Effects of defect states on the performance of CuInGaSe2 solar cells. J. Semicond., 2014, 35(2): 024011. doi: 10.1088/1674-4926/35/2/024011

[3]

Fengyu Xie, Jiacheng Gao, Ning Wang. Photoelectrochemical performance of La3+-doped TiO2. J. Semicond., 2017, 38(7): 073002. doi: 10.1088/1674-4926/38/7/073002

[4]

Zongcun Liang, Dianlei Wang, Yanbin Zhu. Effects of substrate characteristics on the passivation performance of ALD-Al2O3 thin film for high-efficiency solar cells. J. Semicond., 2014, 35(5): 054002. doi: 10.1088/1674-4926/35/5/054002

[5]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[6]

B. Shougaijam, R. Swain, C. Ngangbam, T.R. Lenka. Analysis of morphological, structural and electrical properties of annealed TiO2 nanowires deposited by GLAD technique. J. Semicond., 2017, 38(5): 053001. doi: 10.1088/1674-4926/38/5/053001

[7]

Gao Pan, Zhang Xuejun, Zhou Wenfang, Wu Jing, Liu Qingju. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium. J. Semicond., 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001

[8]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[9]

Wenhui Xu, Xinguo Ma, Tong Wu, Zhiqi He, Huihu Wang, Chuyun Huang. First-principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr. J. Semicond., 2014, 35(10): 102002. doi: 10.1088/1674-4926/35/10/102002

[10]

S. S. Shinde, T. D. Dongle. Modelling of nanostructured TiO2-based memristors. J. Semicond., 2015, 36(3): 034001. doi: 10.1088/1674-4926/36/3/034001

[11]

Haixiao Wang, Xinhe Zheng, Xinyuan Gan, Naiming Wang, Hui Yang. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell. J. Semicond., 2016, 37(1): 014004. doi: 10.1088/1674-4926/37/1/014004

[12]

Zhang Lucheng, Shen Hui. Novel approach for characterizing the specific shunt resistance caused by the penetration of the front contact through the p–n junction in solar cell. J. Semicond., 2009, 30(7): 074007. doi: 10.1088/1674-4926/30/7/074007

[13]

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004

[14]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[15]

Utsa Das, Partha P. Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis. J. Semicond., 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

[16]

Pan Dai, Shulong Lu, Lian Ji, Wei He, Lifeng Bian, Hui Yang, M. Arimochi, H. Yoshida, S. Uchida, M. Ikeda. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy. J. Semicond., 2013, 34(10): 104006. doi: 10.1088/1674-4926/34/10/104006

[17]

Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun, Kaijian Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells. J. Semicond., 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010

[18]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[19]

Yurun Sun, Kuilong Li, Xulu Zeng. Influence of GaInP ordering on the performance of GaInP solar cells. J. Semicond., 2016, 37(7): 073001. doi: 10.1088/1674-4926/37/7/073001

[20]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

Search

Advanced Search >>

GET CITATION

D F Wang, H Z Tao, X J Zhao, M Y Ji, T J Zhang. Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification[J]. J. Semicond., 2015, 36(2): 023006. doi: 10.1088/1674-4926/36/2/023006.

Export: BibTex EndNote

Article Metrics

Article views: 668 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 04 June 2014 Manuscript revised: Online: Published: 01 February 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误