J. Semicond. > Volume 36 > Issue 3 > Article Number: 034001

Modelling of nanostructured TiO2-based memristors

S. S. Shinde and T. D. Dongle

+ Author Affilications + Find other works by these authors

PDF

Abstract: The fourth fundamental circuit element memristor completes the missing link between charge and magnetic flux. It consists of the function of the resistor as well as memory in nonlinear fashion. The property of the memristor depends on the magnitude and direction of applied potential. This unique property makes it the primitive building block for many applications such as resistive memories, soft computing, neuromorphic systems and chaotic circuits etc. In this paper we report TiO2-based nanostructured memristor modelling. The present memristor model is constructed in MATLAB environment with consideration of the linear drift model of memristor. The result obtained from the linear drift model is well matched with earlier reported results by other research groups.

Key words: memristorlinear drift modelTiO2

Abstract: The fourth fundamental circuit element memristor completes the missing link between charge and magnetic flux. It consists of the function of the resistor as well as memory in nonlinear fashion. The property of the memristor depends on the magnitude and direction of applied potential. This unique property makes it the primitive building block for many applications such as resistive memories, soft computing, neuromorphic systems and chaotic circuits etc. In this paper we report TiO2-based nanostructured memristor modelling. The present memristor model is constructed in MATLAB environment with consideration of the linear drift model of memristor. The result obtained from the linear drift model is well matched with earlier reported results by other research groups.

Key words: memristorlinear drift modelTiO2



References:

[1]

Chua L O. Memristor-the missing circuit element[J]. IEEE Trans Circuit Theory, 1971, 18: 507.

[2]

Joglekar Y N, Wolf S J. The elusive memristor: properties of basic electrical circuits[J]. Eur J Phys, 2009, 30: 661.

[3]

Strukov D B, Snider G S, Stewart D R. The missing memristor found[J]. Nature, 2008, 453: 80.

[4]

Chua L O. Resistance switching memories are memristors[J]. Appl Phys A, 2011, 102: 765.

[5]

Chua L O, Kang S. Memristive devices and systems[J]. Proc IEEE, 1976, 64: 209.

[6]

Di Ventra M, Pershin Y V, Chua L O. Circuit elements with memory: memristors, memcapacitors, and meminductors[J]. Proc IEEE, 2009, 97: 1717.

[7]

Waser R, Aono M. Nanoionics-based resistive switching memories[J]. Nature Mater, 2000, 6: 833.

[8]

Kim K M, Jeong D S, Hwang C S. Nanofilamentary resistive switching in binary oxide system[J]. Nanotechnol, 2011, 22: 254002.

[9]

Sawa A. Resistive switching in transition metal oxides[J]. Materials Today, 2008, 11: 28.

[10]

Pershin Y V, Ventra Di M. Experimental demonstration of associative memory with memristive neural networks[J]. Neural Networks, 2010, 23: 881.

[11]

Wu A L, Wen S P, Zeng Z G. Synchronization control of a class of memristor-based recurrent neural networks[J]. Information Sciences, 2012, 183: 106.

[12]

Wu A L, Zeng Z G, Zhu X S. Exponential synchronization of memristor-based recurrent neural networks with time delays[J]. Neurocomputing, 2011, 74: 3043.

[13]

Merrikh-Bayat , Farnood , Shouraki S B. Bottleneck of using single memristor as a synapse and its solution[J]. Procedia Computer Sci, 2011, 3: 232.

[14]

Jo S H, Chang T, Ebong I. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Lett, 2010, 10: 1297.

[15]

Snider G S. Self-organized computation with unreliable, memristive nanodevices[J]. Nanotechnol, 2007, 18: 365202.

[16]

Muthuswamy B, Kokate P P. Implementing memristor based chaotic circuits[J]. IETE Tech Rev, 2009, 26: 417.

[17]

Itoh M, Chua L O. Memristor oscillators[J]. Int J Bifurcation Chaos, 2008, 18: 3183.

[18]

Bao Bocheng, Liu Zhong, Xu Jianping. Transient chaos in smooth memristor oscillator[J]. Chin Phys B, 2010, 19: 030510.

[19]

Rák Á, Cserey G. Computer-aided design of integrated circuits and systems[J]. IEEE Trans, 2010, 29: 632.

[20]

Biolek Z, Biolek D, Biolková V. SPICE model of memristor with nonlinear dopant drift[J]. Radio Eng, 2009, 18: 210.

[21]

Zaplatilek K. Memristor modeling in MATLAB ® &Simulink ®[J]. Proc Eur Computing Conf, 2011: 62.

[22]

Lehtonen E, Laiho M. CNN using memristors for neighborhood connections[J]. Proc Int Workshop Cell Nanoscale Netw Their Appl, 2010: 1.

[23]

Pickett M D, Strukov D B, Borghetti J L. Switching dynamics in titanium dioxide memristive devices[J]. J Appl Phys, 2009, 106: 1.

[24]

Kvatinsky S, Friedman E G, Kolodny A. TEAM: threshold adaptive memristor model[J]. IEEE Trans Circuits Syst I: Regular Papers, 2013, 60: 211.

[1]

Chua L O. Memristor-the missing circuit element[J]. IEEE Trans Circuit Theory, 1971, 18: 507.

[2]

Joglekar Y N, Wolf S J. The elusive memristor: properties of basic electrical circuits[J]. Eur J Phys, 2009, 30: 661.

[3]

Strukov D B, Snider G S, Stewart D R. The missing memristor found[J]. Nature, 2008, 453: 80.

[4]

Chua L O. Resistance switching memories are memristors[J]. Appl Phys A, 2011, 102: 765.

[5]

Chua L O, Kang S. Memristive devices and systems[J]. Proc IEEE, 1976, 64: 209.

[6]

Di Ventra M, Pershin Y V, Chua L O. Circuit elements with memory: memristors, memcapacitors, and meminductors[J]. Proc IEEE, 2009, 97: 1717.

[7]

Waser R, Aono M. Nanoionics-based resistive switching memories[J]. Nature Mater, 2000, 6: 833.

[8]

Kim K M, Jeong D S, Hwang C S. Nanofilamentary resistive switching in binary oxide system[J]. Nanotechnol, 2011, 22: 254002.

[9]

Sawa A. Resistive switching in transition metal oxides[J]. Materials Today, 2008, 11: 28.

[10]

Pershin Y V, Ventra Di M. Experimental demonstration of associative memory with memristive neural networks[J]. Neural Networks, 2010, 23: 881.

[11]

Wu A L, Wen S P, Zeng Z G. Synchronization control of a class of memristor-based recurrent neural networks[J]. Information Sciences, 2012, 183: 106.

[12]

Wu A L, Zeng Z G, Zhu X S. Exponential synchronization of memristor-based recurrent neural networks with time delays[J]. Neurocomputing, 2011, 74: 3043.

[13]

Merrikh-Bayat , Farnood , Shouraki S B. Bottleneck of using single memristor as a synapse and its solution[J]. Procedia Computer Sci, 2011, 3: 232.

[14]

Jo S H, Chang T, Ebong I. Nanoscale memristor device as synapse in neuromorphic systems[J]. Nano Lett, 2010, 10: 1297.

[15]

Snider G S. Self-organized computation with unreliable, memristive nanodevices[J]. Nanotechnol, 2007, 18: 365202.

[16]

Muthuswamy B, Kokate P P. Implementing memristor based chaotic circuits[J]. IETE Tech Rev, 2009, 26: 417.

[17]

Itoh M, Chua L O. Memristor oscillators[J]. Int J Bifurcation Chaos, 2008, 18: 3183.

[18]

Bao Bocheng, Liu Zhong, Xu Jianping. Transient chaos in smooth memristor oscillator[J]. Chin Phys B, 2010, 19: 030510.

[19]

Rák Á, Cserey G. Computer-aided design of integrated circuits and systems[J]. IEEE Trans, 2010, 29: 632.

[20]

Biolek Z, Biolek D, Biolková V. SPICE model of memristor with nonlinear dopant drift[J]. Radio Eng, 2009, 18: 210.

[21]

Zaplatilek K. Memristor modeling in MATLAB ® &Simulink ®[J]. Proc Eur Computing Conf, 2011: 62.

[22]

Lehtonen E, Laiho M. CNN using memristors for neighborhood connections[J]. Proc Int Workshop Cell Nanoscale Netw Their Appl, 2010: 1.

[23]

Pickett M D, Strukov D B, Borghetti J L. Switching dynamics in titanium dioxide memristive devices[J]. J Appl Phys, 2009, 106: 1.

[24]

Kvatinsky S, Friedman E G, Kolodny A. TEAM: threshold adaptive memristor model[J]. IEEE Trans Circuits Syst I: Regular Papers, 2013, 60: 211.

Fengyu Xie, Jiacheng Gao, Ning Wang. Photoelectrochemical performance of La3+-doped TiO2. J. Semicond., 2017, 38(7): 073002. doi: 10.1088/1674-4926/38/7/073002

Wei Wu, Ning Deng. Memristor interpretations based on constitutive relations. J. Semicond., 2017, 38(10): 104005. doi: 10.1088/1674-4926/38/10/104005

Patrick W. C. Ho, Haider Abbas F. Almurib, T. Nandha Kumar. Memristive SRAM cell of seven transistors and one memristor. J. Semicond., 2016, 37(10): 104002. doi: 10.1088/1674-4926/37/10/104002

Jeetendra Singh, Balwinder Raj. Comparative analysis of memristor models and memories design. J. Semicond., 2018, 39(7): 074006. doi: 10.1088/1674-4926/39/7/074006

Gao Pan, Zhang Xuejun, Zhou Wenfang, Wu Jing, Liu Qingju. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium. J. Semicond., 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001

B. Shougaijam, R. Swain, C. Ngangbam, T.R. Lenka. Analysis of morphological, structural and electrical properties of annealed TiO2 nanowires deposited by GLAD technique. J. Semicond., 2017, 38(5): 053001. doi: 10.1088/1674-4926/38/5/053001

Wenhui Xu, Xinguo Ma, Tong Wu, Zhiqi He, Huihu Wang, Chuyun Huang. First-principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr. J. Semicond., 2014, 35(10): 102002. doi: 10.1088/1674-4926/35/10/102002

Duofa Wang, Haizheng Tao, Xiujian Zhao, Meiyan Ji, Tianjin Zhang. Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification. J. Semicond., 2015, 36(2): 023006. doi: 10.1088/1674-4926/36/2/023006

Liao Yongjian, Zhang Jiancheng, Gu Feng, Shen Yue. Fabrication of nanocrystalline spinel glass-Ceramics for substrates of high-Performance hard-Disk. J. Semicond., 2003, 24(S1): 99.

Zhiqiang You, Fei Hu, Liming Huang, Peng Liu, Jishun Kuang, Shiying Li. A long lifetime, low error rate RRAM design with self-repair module. J. Semicond., 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004

Wei Wu, Ning Deng. Electro-magnetic interpretation of four-element torus. J. Semicond., 2017, 38(11): 114008. doi: 10.1088/1674-4926/38/11/114008

Yanzhou Sun, Xiaoqian Liu, Dati Su, Huibin Yang. Research on memory characteristics of microcavity dielectric barrier discharge. J. Semicond., 2018, 39(10): 1.

Wen Xin, Cao Meng, Wu Jie, Tao Junchao, Sun Yan, Dai Ning. Morphology dependence of TiO2 nanotube arrays on anodization variables and buffer medium. J. Semicond., 2010, 31(6): 063003. doi: 10.1088/1674-4926/31/6/063003

Xuechao Li, Jianhao Shi, Rundong Wan. The slabs for the rutile TiO2(110) surface. J. Semicond., 2016, 37(12): 122003. doi: 10.1088/1674-4926/37/12/122003

K S Divya, Athulya K Madhu, T U Umadevi, T Suprabha, P. Radhakrishnan Nair, Suresh Mathew. Improving the photocatalytic performance of TiO2 via hybridizing with graphene. J. Semicond., 2017, 38(6): 063002. doi: 10.1088/1674-4926/38/6/063002

Zhao Wei, Wang Mei, Su Xiyu, Wang Yachao, Li Zhenyong. Electronic and optical properties of the doped TiO2 system. J. Semicond., 2010, 31(7): 072001. doi: 10.1088/1674-4926/31/7/072001

, , , , . TiO2薄膜制备及其氧敏特性. J. Semicond., 2005, 26(2): 324.

Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Slurry components of TiO2 thin film in chemical mechanical polishing. J. Semicond., 2014, 35(10): 106003. doi: 10.1088/1674-4926/35/10/106003

Xu Linhua, Li Xiangyin, Shi Linxing, Shen Hua. Effect of Annealing Temperature on ZnO Thin Film Grown on a TiO2 Buffer Layer. J. Semicond., 2008, 29(10): 1992.

, , , , . 聚乙二醇含量对纳米TiO2多孔薄膜性质的影响. J. Semicond., 2005, 26(2): 329.

Search

Advanced Search >>

GET CITATION

S. S. Shinde, T. D. Dongle. Modelling of nanostructured TiO2-based memristors[J]. J. Semicond., 2015, 36(3): 034001. doi: 10.1088/1674-4926/36/3/034001.

Export: BibTex EndNote

Article Metrics

Article views: 132 Times PDF downloads: 7 Times

History

Manuscript received: 11 September 2014 Manuscript revised: Online: Published: 01 March 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误