J. Semicond. > Volume 36 > Issue 6 > Article Number: 063002

Crystallization kinetics of Sn40Se60 thin films for phase change memory applications

Joshua M. Kundu , Patrick M. Karimi and Walter K. Njoroge

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The crystallization kinetics of Sn40Se60 thin films has been successfully investigated using sheet resistance versus temperature measurements. Thermal evaporation was used to deposit the films on ordinary glass substrates. The crystallization temperature for Sn40Se60 thin film was found to be 156.6 ± 0.3 ℃. In the as-deposited state, the sheet resistance was found to be 195 MΩ, this value declined to 1560 Ω/口 upon annealing. The value of activation energy obtained from the Kissinger plot was 0.62 ± 0.07 eV. From the results obtained, Sn40Se60 is a promising alloy for PCM application because of its high electrical contrast, high crystallization temperature, and relatively high activation energy.

Key words: crystallization temperatureactivation energyelectrical contrastphase change memory

Abstract: The crystallization kinetics of Sn40Se60 thin films has been successfully investigated using sheet resistance versus temperature measurements. Thermal evaporation was used to deposit the films on ordinary glass substrates. The crystallization temperature for Sn40Se60 thin film was found to be 156.6 ± 0.3 ℃. In the as-deposited state, the sheet resistance was found to be 195 MΩ, this value declined to 1560 Ω/口 upon annealing. The value of activation energy obtained from the Kissinger plot was 0.62 ± 0.07 eV. From the results obtained, Sn40Se60 is a promising alloy for PCM application because of its high electrical contrast, high crystallization temperature, and relatively high activation energy.

Key words: crystallization temperatureactivation energyelectrical contrastphase change memory



References:

[1]

Yamada N, Ohno E, Nishiuchi K. Rapid phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disc memory[J]. J Appl Phys, 1991, 69(5): 2849.

[2]

Tominaga J, Kikukawa T, Takahashi M. Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction[J]. J Appl Phys, 1997, 82(7): 3214.

[3]

Raoux S, Jordan-Sweet J L, Kellok A J. Crystallization properties of ultra-thin phase change films[J]. J Appl Phys, 2008, 103(11): 114310.

[4]

Ovshinsky S R. Reversible electrical switching phenomena in disordered structures[J]. Phys Rev Lett, 1968, 21(20): 1450.

[5]

Pirovano A, Redaelli A, Pellizzer F. Reliability study of phase change nonvolatile memories[J]. IEEE Trans Device Mater Reliab, 2004, 4(3): 422.

[6]

Burr G W, Breitwisch M J, Franceschini M. Phase change memory technology[J]. J Vac Sci Technol, 2010, 28(2): 223.

[7]

Raoux S. Phase change materials[J]. Annual Review of Material Research, 2009, 39: 25.

[8]

Adler D, Shur M S, Silver M. Threshold switching in chalcogenide glass thin films[J]. J Appl Phys, 1980, 51(6): 3289.

[9]

Redaelli A, Pirovano A, Pellizer E. Electronic switching effect and phase change transition in chalcogenide materials[J]. IEEE Electron Device Lett, 2004, 25(10): 684.

[10]

Ielmini D, Zhang Y G. Analytical model for sub-threshold conduction and threshold switching in chalcogenide based memory devices[J]. J Appl Phys, 2007, 102(5): 054517.

[11]

Heireche L, Belhadji M. Non-isothermal crystallization in Ge15.5-xTe84.5Sbx (0.5 < x < 1.5)[J]. J Ovonic Research, 2007(3)-15.

[12]

Raoux S, Cheng H, Munoz B. Crystallization characteristics of Ge-Sb and Ge-Te phase change materials[J]. Eur Phase Change Ovonic Science Symposium, 2009: 91.

[13]

Qiao B, Yun L, Lin Y. The performance of GeSbTe material for PCRAM device[J]. Integrated Ferroelectronics Journal, 2006, 10: 261.

[14]

Park J B, Park G S, Baik H S. Phase change behavior of stoichiometric Ge2Sb2Te5 in phase change random access memory[J]. J Electrochem Soc, 2007, 154(3).

[15]

Raoux S, Shelby R, Munoz B. Crystallization times of as deposited and melt-quenched amorphous phase change materials[J]. Eur Phase Change Ovonic Science Symposium, 2008: 40.

[16]

Park S J, Kim I S, Kim S K. Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5[J]. Semicond Sci and Technol, 2008, 23: 1050064.

[17]

Pedersen T P L, Kalb J, Njoroge W K. Mechanical stresses upon crystallization in phase change materials[J]. Appl Phys Lett, 2001, 79(22): 3597.

[18]

Lee J, Ni H, Ramirez G A. Compositional effects on the crystallization kinetics of Ni/Ti thin films[J]. J Mater Resources, 2005, 20(7): 1728.

[19]

Yamada N, Ohno E, Akahira K. High speed over-writable phase change optical disk material[J]. Jpn J Appl Phys, 1987, 26(4): 61.

[20]

Suh D S, Kim K H P, Noh J S. Critical quenching speed determining phase of Ge2Sb2Te5 in phase change memory[J]. IEDM Technical Digest, 2006.

[21]

Friedrich I, Weidenholf , Njoroge W K. Structural transformation of Ge2Sb2Te5 films studied by electrical resistance measurements[J]. J Appl Phys, 2000, 87: 4130.

[22]

Chung K M, Wamwangi D, Woda M. Investigation of SnSe, SnSe2 and Sn2Se3 alloys for phase change memory application[J]. J Appl Phys, 2008, 103(8): 083523.

[23]

Cheng K. Evaluation of crystallization kinetics of glasses by non-isothermal analysis[J]. J Mater Sci, 2001, 36: 1043.

[24]

Qiao B, Yun L, Lin Y. The performance of GeSbTe material for PCRAM device[J]. Integrated Ferroelectronics Journal, 2006, 10: 261.

[25]

Park J B, Park G S, Baik H S. Phase change behavior of stoichiometric Ge2Sb2Te5 in phase change random access memory[J]. J Electrochem Soc, 2007, 154(3).

[26]

Njoroge W K, Woltgens H W, Wuttig M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films[J]. J Vac Sci Technol, 2001, 20(1): 230.

[1]

Yamada N, Ohno E, Nishiuchi K. Rapid phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disc memory[J]. J Appl Phys, 1991, 69(5): 2849.

[2]

Tominaga J, Kikukawa T, Takahashi M. Structure of the optical phase change memory alloy, Ag-V-In-Sb-Te, determined by optical spectroscopy and electron diffraction[J]. J Appl Phys, 1997, 82(7): 3214.

[3]

Raoux S, Jordan-Sweet J L, Kellok A J. Crystallization properties of ultra-thin phase change films[J]. J Appl Phys, 2008, 103(11): 114310.

[4]

Ovshinsky S R. Reversible electrical switching phenomena in disordered structures[J]. Phys Rev Lett, 1968, 21(20): 1450.

[5]

Pirovano A, Redaelli A, Pellizzer F. Reliability study of phase change nonvolatile memories[J]. IEEE Trans Device Mater Reliab, 2004, 4(3): 422.

[6]

Burr G W, Breitwisch M J, Franceschini M. Phase change memory technology[J]. J Vac Sci Technol, 2010, 28(2): 223.

[7]

Raoux S. Phase change materials[J]. Annual Review of Material Research, 2009, 39: 25.

[8]

Adler D, Shur M S, Silver M. Threshold switching in chalcogenide glass thin films[J]. J Appl Phys, 1980, 51(6): 3289.

[9]

Redaelli A, Pirovano A, Pellizer E. Electronic switching effect and phase change transition in chalcogenide materials[J]. IEEE Electron Device Lett, 2004, 25(10): 684.

[10]

Ielmini D, Zhang Y G. Analytical model for sub-threshold conduction and threshold switching in chalcogenide based memory devices[J]. J Appl Phys, 2007, 102(5): 054517.

[11]

Heireche L, Belhadji M. Non-isothermal crystallization in Ge15.5-xTe84.5Sbx (0.5 < x < 1.5)[J]. J Ovonic Research, 2007(3)-15.

[12]

Raoux S, Cheng H, Munoz B. Crystallization characteristics of Ge-Sb and Ge-Te phase change materials[J]. Eur Phase Change Ovonic Science Symposium, 2009: 91.

[13]

Qiao B, Yun L, Lin Y. The performance of GeSbTe material for PCRAM device[J]. Integrated Ferroelectronics Journal, 2006, 10: 261.

[14]

Park J B, Park G S, Baik H S. Phase change behavior of stoichiometric Ge2Sb2Te5 in phase change random access memory[J]. J Electrochem Soc, 2007, 154(3).

[15]

Raoux S, Shelby R, Munoz B. Crystallization times of as deposited and melt-quenched amorphous phase change materials[J]. Eur Phase Change Ovonic Science Symposium, 2008: 40.

[16]

Park S J, Kim I S, Kim S K. Phase transition characteristics and device performance of Si-doped Ge2Sb2Te5[J]. Semicond Sci and Technol, 2008, 23: 1050064.

[17]

Pedersen T P L, Kalb J, Njoroge W K. Mechanical stresses upon crystallization in phase change materials[J]. Appl Phys Lett, 2001, 79(22): 3597.

[18]

Lee J, Ni H, Ramirez G A. Compositional effects on the crystallization kinetics of Ni/Ti thin films[J]. J Mater Resources, 2005, 20(7): 1728.

[19]

Yamada N, Ohno E, Akahira K. High speed over-writable phase change optical disk material[J]. Jpn J Appl Phys, 1987, 26(4): 61.

[20]

Suh D S, Kim K H P, Noh J S. Critical quenching speed determining phase of Ge2Sb2Te5 in phase change memory[J]. IEDM Technical Digest, 2006.

[21]

Friedrich I, Weidenholf , Njoroge W K. Structural transformation of Ge2Sb2Te5 films studied by electrical resistance measurements[J]. J Appl Phys, 2000, 87: 4130.

[22]

Chung K M, Wamwangi D, Woda M. Investigation of SnSe, SnSe2 and Sn2Se3 alloys for phase change memory application[J]. J Appl Phys, 2008, 103(8): 083523.

[23]

Cheng K. Evaluation of crystallization kinetics of glasses by non-isothermal analysis[J]. J Mater Sci, 2001, 36: 1043.

[24]

Qiao B, Yun L, Lin Y. The performance of GeSbTe material for PCRAM device[J]. Integrated Ferroelectronics Journal, 2006, 10: 261.

[25]

Park J B, Park G S, Baik H S. Phase change behavior of stoichiometric Ge2Sb2Te5 in phase change random access memory[J]. J Electrochem Soc, 2007, 154(3).

[26]

Njoroge W K, Woltgens H W, Wuttig M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films[J]. J Vac Sci Technol, 2001, 20(1): 230.

[1]

Ruru Huo, Daolin Cai, Bomy Chen, Yifeng Chen, Yuchan Wang, Yueqing Wang, Hongyang Wei, Qing Wang, Yangyang Xia, Dan Gao, Zhitang Song. Endurance characteristics of phase change memory cells. J. Semicond., 2016, 37(5): 054009. doi: 10.1088/1674-4926/37/5/054009

[2]

Ningning Sun, Manqing Tan, Ping Li, Jian Jiao, Xiaofeng Guo, Wentao Guo. Long-term storage life of light source modules by temperature cycling accelerated life test. J. Semicond., 2014, 35(5): 054010. doi: 10.1088/1674-4926/35/5/054010

[3]

Yaoyao Lu, Daolin Cai, Yifeng Chen, Shuai Yan, Lei Wu, Yuanguang Liu, Yang Li, Zhitang Song. Improving the data retention of phase change memory by using a doping element in selected Ge2Sb2Te5. J. Semicond., 2019, 40(4): 042402. doi: 10.1088/1674-4926/40/4/042402

[4]

Feng Gaoming, Liu Bo, Wu Liangcai, Song Zhitang, Feng Songlin, Chen Bomy. Properties of W Sub-Microtube Heater Electrode Used for PhaseChange Memory. J. Semicond., 2007, 28(7): 1134.

[5]

Wang Chao, Zhang Yuming, Zhang Yimen. Characteristics of Semi-Insulating 4H-SiC Layers by Vanadium Ion Implantation. J. Semicond., 2006, 27(8): 1396.

[6]

Xiaofeng Guo, Manqing Tan, Xin Wei, Jian Jiao, Wentao Guo, Ningning Sun. Rapid evaluation method for the normal lifetime of an infrared light-emitting diode. J. Semicond., 2013, 34(11): 114009. doi: 10.1088/1674-4926/34/11/114009

[7]

Li Xi, Song Zhitang, Cai Daolin, Chen Xiaogang, Chen Houpeng. An SPICE model for phase-change memory simulations. J. Semicond., 2011, 32(9): 094011. doi: 10.1088/1674-4926/32/9/094011

[8]

Xiao Hong, Houpeng Chen, Zhitang Song, Daolin Cai, Xi Li. A low jitter PLL clock used for phase change memory. J. Semicond., 2013, 34(2): 025012. doi: 10.1088/1674-4926/34/2/025012

[9]

Miao Shanshan, Zhao Youwen, Dong Zhiyuan, Deng Aihong, Yang Jun, Wang Bo. Activation of Fe Doping and Electrical Compensation in Semi-Insulating InP. J. Semicond., 2006, 27(11): 1934.

[10]

Liu Qibin, Zhang Kailiang, Wang Liangyong, Song Zhitang, Feng Songlin. CMP and Electrochemical Characterization of Ge2Sb2Te5 Filmin Polishing Slurry. J. Semicond., 2006, 27(S1): 161.

[11]

Yaling Zhou, Xiaofeng Wang, Yingchun Fu, Xiaodong Wang, Fuhua Yang. Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure. J. Semicond., 2016, 37(8): 084005. doi: 10.1088/1674-4926/37/8/084005

[12]

Wei Yiqun, Lin Xinnan, Jia Yuchao, Cui Xiaole, He Jin, Zhang Xing. A SPICE model for a phase-change memory cell based on the analytical conductivity model. J. Semicond., 2012, 33(11): 114004. doi: 10.1088/1674-4926/33/11/114004

[13]

Wei Yiqun, Lin Xinnan, Jia Yuchao, Cui Xiaole, Zhang Xing, Song Zhitang. Contact size scaling of a W-contact phase-change memory cell based on numerical simulation. J. Semicond., 2012, 33(10): 104006. doi: 10.1088/1674-4926/33/10/104006

[14]

Juntao Li, Bo Liu, Zhitang Song, Dongning Yao, Gaoming Feng, Aodong He, Cheng Peng, Songlin Feng. Reactive ion etching of Si2Sb2Te5 in CF4/Ar plasma for a nonvolatile phase-change memory device. J. Semicond., 2013, 34(5): 056001. doi: 10.1088/1674-4926/34/5/056001

[15]

Said Benramache, Okba Belahssen, Hachemi Ben Temam. Effect of band gap energy on the electrical conductivity in doped ZnO thin film. J. Semicond., 2014, 35(7): 073001. doi: 10.1088/1674-4926/35/7/073001

[16]

Zhou Jianping, Chai Chunlin, Yang Shaoyan, Liu Zhikai, Song Shulin, Li Yanli, Chen Nuofu, Lin Yuanhua. Effect of Ion Energy and Substrate Temperature on Gadolinium Oxide Structure. J. Semicond., 2005, 26(S1): 57.

[17]

Wei Li, Peng Jin, Weiying Wang, Defeng Mao, Guipeng Liu, Zhanguo Wang, Jiaming Wang, Fujun Xu, Bo Shen. Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys. J. Semicond., 2014, 35(9): 093001. doi: 10.1088/1674-4926/35/9/093001

[18]

Huo Mingxue, Tang Xiaochuan, Yin Liang, LiuXiaowei, Wang Xilian. Fabrication of Self-Testable Pressure Sensors Based on Phase Change. J. Semicond., 2006, 27(5): 937.

[19]

Sun Hui, Zhu Xinghua, Yang Dingyu, He Zhiyu, Zhu Shifu, Zhao Beijun. Electrical and γ-ray energy spectrum response properties of PbI2 crystal grown by physical vapor transport. J. Semicond., 2012, 33(5): 053002. doi: 10.1088/1674-4926/33/5/053002

[20]

Neha Gupta, Priyanka Parihar, Vaibhav Neema. Application of source biasing technique for energy efficient DECODER circuit design: memory array application. J. Semicond., 2018, 39(4): 045001. doi: 10.1088/1674-4926/39/4/045001

Search

Advanced Search >>

GET CITATION

J. M. Kundu, P. M. Karimi, W. K. Njoroge. Crystallization kinetics of Sn40Se60 thin films for phase change memory applications[J]. J. Semicond., 2015, 36(6): 063002. doi: 10.1088/1674-4926/36/6/063002.

Export: BibTex EndNote

Article Metrics

Article views: 668 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 19 December 2014 Manuscript revised: Online: Published: 01 June 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误