J. Semicond. > Volume 36 > Issue 6 > Article Number: 063005

β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering

Hong Li , Hongbin Pu , , Chunlei Zheng and Zhiming Chen

+ Author Affilications + Find other works by these authors

PDF

Abstract: β-FeSi2 thin films have been successfully prepared by magnetron sputtering and post rapid thermal annealing method on 6H-SiC (0001) substrates using a FeSi2 target and a Si target. X-ray diffraction (XRD) and Raman spectroscopy are applied to analyze the formation of β-FeSi2 films. XRD spectra reveal that the amorphous FeSi2 films are transformed to β-FeSi2 phase as the annealing temperature is increased from 500 to 900 ℃ for 5 min and the optimal annealing temperature is 900 ℃. The formation of β-FeSi2 is also confirmed by Raman spectroscopy. Scanning electron microscope (SEM) observations indicate that the film is flat, relatively compact and the interface between β-FeSi2 and 6H-SiC is clear. Atomic force microscope (AFM) measurements demonstrate that the surface roughness confirmed by the root mean square (RMS) of the β-FeSi2 film is 0.87 nm. Near-infrared spectrophotometer observation shows that the absorption coefficient is of the order of 105cm-1 and the optical band-gap of the β-FeSi2 film is 0.88 eV. The β-FeSi2 film with high crystal quality is fabricated by co-sputtering a FeSi2 target and a Si target for 60 min and annealing at 900 ℃ for 5 min.

Key words: β-FeSi2 films6H-SiC substratesmagnetron sputteringX-ray diffraction (XRD)

Abstract: β-FeSi2 thin films have been successfully prepared by magnetron sputtering and post rapid thermal annealing method on 6H-SiC (0001) substrates using a FeSi2 target and a Si target. X-ray diffraction (XRD) and Raman spectroscopy are applied to analyze the formation of β-FeSi2 films. XRD spectra reveal that the amorphous FeSi2 films are transformed to β-FeSi2 phase as the annealing temperature is increased from 500 to 900 ℃ for 5 min and the optimal annealing temperature is 900 ℃. The formation of β-FeSi2 is also confirmed by Raman spectroscopy. Scanning electron microscope (SEM) observations indicate that the film is flat, relatively compact and the interface between β-FeSi2 and 6H-SiC is clear. Atomic force microscope (AFM) measurements demonstrate that the surface roughness confirmed by the root mean square (RMS) of the β-FeSi2 film is 0.87 nm. Near-infrared spectrophotometer observation shows that the absorption coefficient is of the order of 105cm-1 and the optical band-gap of the β-FeSi2 film is 0.88 eV. The β-FeSi2 film with high crystal quality is fabricated by co-sputtering a FeSi2 target and a Si target for 60 min and annealing at 900 ℃ for 5 min.

Key words: β-FeSi2 films6H-SiC substratesmagnetron sputteringX-ray diffraction (XRD)



References:

[1]

Pu H B, He X, Quan R D. Simulation of near-infrared photodiode detectors based on β -FeSi2/4H-SiC heterojunctions[J]. Chin Phys B, 2013, 22(3): 037301.

[2]

Li H T, Qian J, Han F F. Density functional theory studies of the optical properties of a β -FeSi2(100)/Si(001) interface at high pressure[J]. Journal of Semiconductors, 2013, 34(7): 072003.

[3]

Kawabata N, Nakamura K. Transformation from ε-FeSi to β -FeSi2 in RF-sputtered FeSix films[J]. Physics Procedia, 2011, 11: 87.

[4]

Peng Z L, Liang S. Electrical and magnetic properties of FeSi2 nanowires[J]. Chin Phys Lett, 2008, 25(11): 4113.

[5]

Yan W J, Zhang C H, Zhang Z Z. The optical-electrical properties of doped β -FeSi2[J]. Journal of Semiconductors, 2013, 34(10): 103003.

[6]

Dmitruk N, Dozsa L, Mamykin S. Effect of annealing on optical properties of thin films with β -FeSi2 quantum dots[J]. Vacuum, 2010, 84: 238.

[7]

Ayache R, Bouabellou A, Richter E. Optical characterization of β -FeSi2 layer formed by ion beam synthesis[J]. Mater Sci Semicond Processing, 2004, 7: 463.

[8]

Hossain M.Z, Mimura T, Miura N. Surface morphology and luminescence characterization of β -FeSi2 thin films prepared by pulsed laser deposition[J]. Appl Surf Sci, 2009, 256-1227.

[9]

Akiyama K, Kaneko S, Hirabayashi Y. Photoluminescence properties of Si/β -FeSi2/Si double heterostructure[J]. Thin Solid Films, 2006, 508: 380.

[10]

Funase Y, Suzuno M, Toko K. Effect of atomic-hydrogen irradiation on reduction of residual carrier concentration in β -FeSi2 films grown on Si substrates by atomic-hydrogen-assisted molecular beam epitaxy[J]. J Cryst Growth, 2013, 378: 365.

[11]

Li C, Lai H K, Chen S Y. Influence of annealing temperature on luminescence of β -FeSi2 particles embedded in Silicon[J]. Journal of Semiconductors, 2006, 27(1): 82.

[12]

Akiyama K, Kaneko S, Kadowaki T. Epitaxial Orientation of β -FeSi2 on 3C-SiC/Si(111)[J]. Jpn J Appl Phys, 2010, 49: 08J.

[13]

Izumi S, Shaban M, Promros N. Near-infrared photodetection of β -FeSi2/Si heterojunction photodiodes at low temperatures[J]. Appl Phys Lett, 2013, 102: 032107.

[14]

Liu Z X, Tanaka M, Kuroda R. Influence of Si/Fe ratio in multilayer structure on crystalline growth of β -FeSi2 thin film on Si substrate[J]. Appl Phys Lett, 2008, 93: 021907.

[15]

Maeda Y, Udono H, Terai Y. Raman spectra for β -FeSi2 bulk crystals[J]. Thin Solid Films, 2004, 461: 165.

[16]

Kolel-Veetil M K, Keller T M. Organometallic routes into the nanorealms of binary Fe-Si phase[J]. Materials, 2010, 3: 1049.

[1]

Pu H B, He X, Quan R D. Simulation of near-infrared photodiode detectors based on β -FeSi2/4H-SiC heterojunctions[J]. Chin Phys B, 2013, 22(3): 037301.

[2]

Li H T, Qian J, Han F F. Density functional theory studies of the optical properties of a β -FeSi2(100)/Si(001) interface at high pressure[J]. Journal of Semiconductors, 2013, 34(7): 072003.

[3]

Kawabata N, Nakamura K. Transformation from ε-FeSi to β -FeSi2 in RF-sputtered FeSix films[J]. Physics Procedia, 2011, 11: 87.

[4]

Peng Z L, Liang S. Electrical and magnetic properties of FeSi2 nanowires[J]. Chin Phys Lett, 2008, 25(11): 4113.

[5]

Yan W J, Zhang C H, Zhang Z Z. The optical-electrical properties of doped β -FeSi2[J]. Journal of Semiconductors, 2013, 34(10): 103003.

[6]

Dmitruk N, Dozsa L, Mamykin S. Effect of annealing on optical properties of thin films with β -FeSi2 quantum dots[J]. Vacuum, 2010, 84: 238.

[7]

Ayache R, Bouabellou A, Richter E. Optical characterization of β -FeSi2 layer formed by ion beam synthesis[J]. Mater Sci Semicond Processing, 2004, 7: 463.

[8]

Hossain M.Z, Mimura T, Miura N. Surface morphology and luminescence characterization of β -FeSi2 thin films prepared by pulsed laser deposition[J]. Appl Surf Sci, 2009, 256-1227.

[9]

Akiyama K, Kaneko S, Hirabayashi Y. Photoluminescence properties of Si/β -FeSi2/Si double heterostructure[J]. Thin Solid Films, 2006, 508: 380.

[10]

Funase Y, Suzuno M, Toko K. Effect of atomic-hydrogen irradiation on reduction of residual carrier concentration in β -FeSi2 films grown on Si substrates by atomic-hydrogen-assisted molecular beam epitaxy[J]. J Cryst Growth, 2013, 378: 365.

[11]

Li C, Lai H K, Chen S Y. Influence of annealing temperature on luminescence of β -FeSi2 particles embedded in Silicon[J]. Journal of Semiconductors, 2006, 27(1): 82.

[12]

Akiyama K, Kaneko S, Kadowaki T. Epitaxial Orientation of β -FeSi2 on 3C-SiC/Si(111)[J]. Jpn J Appl Phys, 2010, 49: 08J.

[13]

Izumi S, Shaban M, Promros N. Near-infrared photodetection of β -FeSi2/Si heterojunction photodiodes at low temperatures[J]. Appl Phys Lett, 2013, 102: 032107.

[14]

Liu Z X, Tanaka M, Kuroda R. Influence of Si/Fe ratio in multilayer structure on crystalline growth of β -FeSi2 thin film on Si substrate[J]. Appl Phys Lett, 2008, 93: 021907.

[15]

Maeda Y, Udono H, Terai Y. Raman spectra for β -FeSi2 bulk crystals[J]. Thin Solid Films, 2004, 461: 165.

[16]

Kolel-Veetil M K, Keller T M. Organometallic routes into the nanorealms of binary Fe-Si phase[J]. Materials, 2010, 3: 1049.

[1]

Zhang Huafu, Yang Shugang, Liu Hanfa, Yuan Changkun. Preparation and characterization of transparent conducting ZnO:W films by DC magnetron sputtering. J. Semicond., 2011, 32(4): 043002. doi: 10.1088/1674-4926/32/4/043002

[2]

Ma Quanbao, Zhu Liping, Ye Zhizhen, He Haiping, Wang Jingrui, Hu Shaohua, Zhao Binghui. Influence of Sputtering Pressure on the Properties of ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering. J. Semicond., 2007, 28(S1): 285.

[3]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

[4]

Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001

[5]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[6]

Chunlei Zheng, Hongbin Pu, Hong Li, Zhiming Chen. Photoelectric properties of p-β-FeSi2/n-4H-SiC heterojunction near-infrared photodiode. J. Semicond., 2015, 36(5): 054009. doi: 10.1088/1674-4926/36/5/054009

[7]

Zhang Jun, Xie Erqing, Fu Yujun, Li Hui, Shao Lexi. Influence of Substrate Temperature and Nitrogen Gas on Zinc Nitride Thin Films Prepared by RF Reactive Sputtering. J. Semicond., 2007, 28(8): 1173.

[8]

Zhang Huafu, Lei Chengxin, Liu Hanfa, Yuan Changkun. Thickness dependence of the properties of transparent conducting ZnO:Zr films deposited on flexible substrates by RF magnetron sputtering. J. Semicond., 2009, 30(4): 043004. doi: 10.1088/1674-4926/30/4/043004

[9]

Zhifang Lei, Guangyu Chen, Shibin Gu, Lingling Dai, Rong Yang, Yuan Meng, Ted Guo, Liwei Li. Development of aluminum-doped ZnO films for a-Si:H/μc-Si:H solar cell applications. J. Semicond., 2013, 34(6): 063004. doi: 10.1088/1674-4926/34/6/063004

[10]

Chen Weidong, Feng Lianghuan, Lei Zhi, Zhang Jingquan, Wu Lili, Cai Wei, Cai Yaping, Yao Feifei, Li Wei, Li Bing, Zheng Jiagui. Growth of AlSb Polycrystalline Films by Magnetron Sputtering and Annealing. J. Semicond., 2006, 27(3): 541.

[11]

Guo Hengqun, Lin Shangxin, Wang Qiming. Photoluminescence and Application of Nonlinear Optical Property of nc-Si-SiO2 Films. J. Semicond., 2006, 27(2): 345.

[12]

Li Jun, Yan Jinliang, Sun Xueqing, Li Kewei, Yang Chunxiu. Influence of Ag Layer Thickness on the Properties of ZnO/Ag/ZnO Films. J. Semicond., 2007, 28(9): 1402.

[13]

Bing Cheng, Yijun Yin, Jianqiang Han, Jie Zhang. The TCR of Ni24.9Cr72.5Si2.6 thin films deposited by DC and RF magnetronsputtering. J. Semicond., 2017, 38(5): 053005. doi: 10.1088/1674-4926/38/5/053005

[14]

Zhang Huafu, Liu Hanfa, Lei Chengxin, Zhou Aiping, Yuan Changkun. Low-temperature deposition of transparent conducting Mn–W co-doped ZnO thin films. J. Semicond., 2010, 31(8): 083005. doi: 10.1088/1674-4926/31/8/083005

[15]

Junfei Shi, Chengyuan Dong, Wenjun Dai, Jie Wu, Yuting Chen, Runze Zhan. The influence of RF power on the electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices. J. Semicond., 2013, 34(8): 084003. doi: 10.1088/1674-4926/34/8/084003

[16]

Li Ting, Yan Jinliang, Ding Xingwei, Zhang Liying. Effect of substrate temperature on the properties of deep ultraviolet transparent conductive ITO/Ga2. J. Semicond., 2012, 33(1): 013002. doi: 10.1088/1674-4926/33/1/013002

[17]

Li Baohe, Hwang Pol, Yang Tao, Zhai Zhonghai, Zhu Fengwu. Structure and Magnetic Properties of Vacuum Annealed Fe/Pt Multilayers. J. Semicond., 2005, 26(S1): 32.

[18]

Yunhong Hou, Meng Zhang, Guowei Han, Chaowei Si, Yongmei Zhao, Jin Ning. A review:aluminum nitride MEMS contour-mode resonator. J. Semicond., 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001

[19]

Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003

[20]

Zhang Jinmin, Xie Quan, Zeng Wuxian, Liang Yan, Zhang Yong, Yu Ping, Tian Hua. Effects of Annealing on Atomic Interdiffusion and Microstructures in Fe/Si Systems. J. Semicond., 2007, 28(12): 1888.

Search

Advanced Search >>

GET CITATION

H Li, H B Pu, C L Zheng, Z M Chen. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering[J]. J. Semicond., 2015, 36(6): 063005. doi: 10.1088/1674-4926/36/6/063005.

Export: BibTex EndNote

Article Metrics

Article views: 451 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 27 September 2014 Manuscript revised: Online: Published: 01 June 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误