J. Semicond. > Volume 36 > Issue 6 > Article Number: 064002

Heterojunction DDR THz IMPATT diodes based on AlxGa1-xN/GaN material system

Suranjana Banerjee 1, and Monojit Mitra 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Simulation studies are made on the large-signal RF performance and avalanche noise properties of heterojunction double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on AlxGa1-xN/GaN material system designed to operate at 1.0 THz frequency. Two different heterojunction DDR structures such as n-Al0.4Ga0.6N/p-GaN and n-GaN/p-Al0.4Ga0.6N are proposed in this study. The large-signal output power, conversion efficiency and noise properties of the heterojunction DDR IMPATTs are compared with homojunction DDR IMPATT devices based on GaN and Al0.4Ga0.6N. The results show that the n-Al0.4Ga0.6N/p-GaN heterojunction DDR device not only surpasses the n-GaN/p-Al0.4Ga0.6N DDR device but also homojunction DDR IMPATTs based on GaN and Al0.4Ga0.6N as regards large-signal conversion efficiency, power output and avalanche noise performance at 1.0 THz.

Key words: AlGaN/GaN heterojuntionDDR IMPATTsavalanche noiseterahertz frequency

Abstract: Simulation studies are made on the large-signal RF performance and avalanche noise properties of heterojunction double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on AlxGa1-xN/GaN material system designed to operate at 1.0 THz frequency. Two different heterojunction DDR structures such as n-Al0.4Ga0.6N/p-GaN and n-GaN/p-Al0.4Ga0.6N are proposed in this study. The large-signal output power, conversion efficiency and noise properties of the heterojunction DDR IMPATTs are compared with homojunction DDR IMPATT devices based on GaN and Al0.4Ga0.6N. The results show that the n-Al0.4Ga0.6N/p-GaN heterojunction DDR device not only surpasses the n-GaN/p-Al0.4Ga0.6N DDR device but also homojunction DDR IMPATTs based on GaN and Al0.4Ga0.6N as regards large-signal conversion efficiency, power output and avalanche noise performance at 1.0 THz.

Key words: AlGaN/GaN heterojuntionDDR IMPATTsavalanche noiseterahertz frequency



References:

[1]

Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation[J]. Rep Prog Phys, 2007, 70: 1325.

[2]

Grischkowsky D, Keiding S, Exter M. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. J Opt Soc Am B, 1990, 7: 2006.

[3]

Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Appl Phys Lett, 2007, 91: 184102.

[4]

Yasui T, Yasuda T, Sawanaka K. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film[J]. Appl Opt, 2005, 44: 6849.

[5]

Stoik C D, Bohn M J, Blackshire J L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy[J]. Opt Express, 2008, 16: 17039.

[6]

Jördens C, Koch M. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy[J]. Opt Eng, 2008, 47: 037003.

[7]

Fitzgerald A J, Cole B E, Taday P F. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging[J]. J Pharm Sci, 2005, 94: 177.

[8]

Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Trans Microw Theory & Tech, 2004, 52: 2438.

[9]

Siegel P H. THz instruments for space[J]. IEEE Trans Antenn Propag, 2007, 55: 2957.

[10]

Acharyya A, Banerjee J P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources[J]. Appl Nanosci, 2014, 4: 1.

[11]

Acharyya A, Mallik A, Banerjee D. IMPATT devices based on group III-V compound semiconductors: prospects as potential terahertz radiators[J]. HKIE Transactions, 2014.

[12]

Banerjee S, Acharyya A, Banerjee J P. Noise performance of heterojunction DDR MITATT devices based on Si/Si1-xGex at W-band[J]. Active and Passive Electronic Components, 2013, 2013: 1.

[13]

Sacconi F, Carlo A D, Lugli P. Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs[J]. IEEE Trans Electron Devices, 2001, 48(3): 450.

[14]

Xing H G, Mishra U K. Temperature dependent I-V characteristics of AlGaN/GaN HBTs and GaN BJTs[J]. Proceedings of IEEE Lester Eastman Conference on High Performance Devices, 2004, 48(3): 195.

[15]

Acharyya A, Banerjee S, Banerjee J P. Influence of skin effect on the series resistance of millimeter-wave IMPATT devices[J]. Journal of Computational Electronics, 2013, 12: 511.

[16]

Acharyya A, Mukherjee M, Banerjee J P. Noise performance of millimeter-wave silicon based mixed tunneling avalanche transit time (MITATT) diode[J]. International Journal of Electrical and Electronics Engineering, 2010, 4(8): 577.

[17]

Gummel H K, Blue J L. A small-signal theory of avalanche noise in IMPATT diodes[J]. IEEE Trans Electron Devices, 1967, 14: 569.

[18]

Sze S M, Ryder R M. Microwave Avalanche diodes[J]. Proc IEEE, Special Issue on Microwave Semiconductor Devices, 1971, 59: 1140.

[19]

Kunihiro K, Kasahara K, Takahashi Y. Experimental evaluation of impact ionization coefficients in GaN[J]. IEEE Electron Device Lett, 1999, 20: 608.

[20]

Shiyu S C, Wang G. High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective[J]. J Appl Phys, 2008, 103: 703.

[21]

Tut T, Gokkavas M, Butun B. Experimental evaluation of impact ionization coefficients in AlxGa1-xN based avalanche photodiodes[J]. Appl Phys Lett, 2006, 89: 183524.

[22]

Kim T W, Choo D C, Yoo K H. Carrier density and mobility modifications of the two-dimensional electron gas due to an embedded AlN potential barrier layer in AlxGa1-xN/GaN heterostructures[J]. J Appl Phys, 2005, 97: 103721.

[23]

Electronic Archive: New Semiconductor Materials, Characteristics and Properties [Accessed on 31st August 2014]. Available from: http://www[J]. Characteristics and Properties.

[24]

Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator[J]. IEEE Trans Electron Devices, 1969, 6: 64.

[1]

Chan W L, Deibel J, Mittleman D M. Imaging with terahertz radiation[J]. Rep Prog Phys, 2007, 70: 1325.

[2]

Grischkowsky D, Keiding S, Exter M. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. J Opt Soc Am B, 1990, 7: 2006.

[3]

Debus C, Bolivar P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Appl Phys Lett, 2007, 91: 184102.

[4]

Yasui T, Yasuda T, Sawanaka K. Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film[J]. Appl Opt, 2005, 44: 6849.

[5]

Stoik C D, Bohn M J, Blackshire J L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy[J]. Opt Express, 2008, 16: 17039.

[6]

Jördens C, Koch M. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy[J]. Opt Eng, 2008, 47: 037003.

[7]

Fitzgerald A J, Cole B E, Taday P F. Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging[J]. J Pharm Sci, 2005, 94: 177.

[8]

Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Trans Microw Theory & Tech, 2004, 52: 2438.

[9]

Siegel P H. THz instruments for space[J]. IEEE Trans Antenn Propag, 2007, 55: 2957.

[10]

Acharyya A, Banerjee J P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources[J]. Appl Nanosci, 2014, 4: 1.

[11]

Acharyya A, Mallik A, Banerjee D. IMPATT devices based on group III-V compound semiconductors: prospects as potential terahertz radiators[J]. HKIE Transactions, 2014.

[12]

Banerjee S, Acharyya A, Banerjee J P. Noise performance of heterojunction DDR MITATT devices based on Si/Si1-xGex at W-band[J]. Active and Passive Electronic Components, 2013, 2013: 1.

[13]

Sacconi F, Carlo A D, Lugli P. Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs[J]. IEEE Trans Electron Devices, 2001, 48(3): 450.

[14]

Xing H G, Mishra U K. Temperature dependent I-V characteristics of AlGaN/GaN HBTs and GaN BJTs[J]. Proceedings of IEEE Lester Eastman Conference on High Performance Devices, 2004, 48(3): 195.

[15]

Acharyya A, Banerjee S, Banerjee J P. Influence of skin effect on the series resistance of millimeter-wave IMPATT devices[J]. Journal of Computational Electronics, 2013, 12: 511.

[16]

Acharyya A, Mukherjee M, Banerjee J P. Noise performance of millimeter-wave silicon based mixed tunneling avalanche transit time (MITATT) diode[J]. International Journal of Electrical and Electronics Engineering, 2010, 4(8): 577.

[17]

Gummel H K, Blue J L. A small-signal theory of avalanche noise in IMPATT diodes[J]. IEEE Trans Electron Devices, 1967, 14: 569.

[18]

Sze S M, Ryder R M. Microwave Avalanche diodes[J]. Proc IEEE, Special Issue on Microwave Semiconductor Devices, 1971, 59: 1140.

[19]

Kunihiro K, Kasahara K, Takahashi Y. Experimental evaluation of impact ionization coefficients in GaN[J]. IEEE Electron Device Lett, 1999, 20: 608.

[20]

Shiyu S C, Wang G. High-field properties of carrier transport in bulk wurtzite GaN: Monte Carlo perspective[J]. J Appl Phys, 2008, 103: 703.

[21]

Tut T, Gokkavas M, Butun B. Experimental evaluation of impact ionization coefficients in AlxGa1-xN based avalanche photodiodes[J]. Appl Phys Lett, 2006, 89: 183524.

[22]

Kim T W, Choo D C, Yoo K H. Carrier density and mobility modifications of the two-dimensional electron gas due to an embedded AlN potential barrier layer in AlxGa1-xN/GaN heterostructures[J]. J Appl Phys, 2005, 97: 103721.

[23]

Electronic Archive: New Semiconductor Materials, Characteristics and Properties [Accessed on 31st August 2014]. Available from: http://www[J]. Characteristics and Properties.

[24]

Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator[J]. IEEE Trans Electron Devices, 1969, 6: 64.

Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, Sudeepto Dasgupta, J.P. Banerjee. Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies. J. Semicond., 2014, 35(8): 084003. doi: 10.1088/1674-4926/35/8/084003

Aritra Acharyya, Jit Chakraborty, Kausik Das, Subir Datta, Pritam De, Suranjana Banerjee, J.P. Banerjee. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond., 2013, 34(10): 104003. doi: 10.1088/1674-4926/34/10/104003

Zhou Yu, Sun Jiandong, Sun Yunfei, Zhang Zhipeng, Lin Wenkui, Liu Hongxin, Zeng Chunhong, Lu Min, Cai Yong, Wu Dongmin, Lou Shitao, Qin Hua, Zhang Baoshun. Characterization of a room temperature terahertz detector based on a GaN/AlGaN HEMT. J. Semicond., 2011, 32(6): 064005. doi: 10.1088/1674-4926/32/6/064005

Zhongxin Zheng, Jiandong Sun, Yu Zhou, Zhipeng Zhang, Hua Qin. Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure. J. Semicond., 2015, 36(10): 104002. doi: 10.1088/1674-4926/36/10/104002

Yu'an Liu, Yiqi Zhuang. A gate current 1/f noise model for GaN/AlGaN HEMTs. J. Semicond., 2014, 35(12): 124005. doi: 10.1088/1674-4926/35/12/124005

Pang Lei, Pu Yan, Liu Xinyu, Wang Liang, Liu Jian. Noise performance in AlGaN/GaN HEMTs under high drain bias. J. Semicond., 2009, 30(8): 084004. doi: 10.1088/1674-4926/30/8/084004

Wang Dongfang, Yuan Tingting, Wei Ke, Chen Xiaojuan, Liu Xinyu. Gate-structure optimization for high frequency power AlGaN/GaN HEMTs. J. Semicond., 2010, 31(5): 054003. doi: 10.1088/1674-4926/31/5/054003

Ran Junxue, Wang Xiaoliang, Wang Cuimei, Wang Junxi, Zeng Yiping, Li Jinmin. Simulation on High-Frequency Performance of AlGaN/GaN HBTs. J. Semicond., 2005, 26(13): 147.

Pang Lei, Pu Yan, Liu Xinyu, Wang Liang, Li Chengzhan, Liu Jian, Zheng Yingkui, Wei Ke. Annealing before gate metal deposition related noise performance in AlGaN/GaN HEMTs. J. Semicond., 2009, 30(5): 054001. doi: 10.1088/1674-4926/30/5/054001

R. K. Parida, A. K. Panda. GaN based transfer electron and avalanche transit time devices. J. Semicond., 2012, 33(5): 054001. doi: 10.1088/1674-4926/33/5/054001

Deepak K. Karan, Pranati Panda, G. N. Dash. Effect of tunneling current on the noise characteristics of a 4H-SiC Read Avalanche diode. J. Semicond., 2013, 34(1): 014001. doi: 10.1088/1674-4926/34/1/014001

Wenzhou Wu, Buwen Cheng, Jun Zheng, Zhi Liu, Chuanbo Li, Yuhua Zuo, Chunlai Xue. High gain-bandwidth product Ge/Si tunneling avalanche photodiode with high-frequency tunneling effect. J. Semicond., 2017, 38(11): 114003. doi: 10.1088/1674-4926/38/11/114003

Shimin Feng, Suihua Zhou, Zhiyi Chen. A very low noise preamplifier for extremely low frequency magnetic antenna. J. Semicond., 2013, 34(7): 075003. doi: 10.1088/1674-4926/34/7/075003

Chen Zuotian, Wu Xuan, Tang Shoulong, Wu Jianhui. CMOS Implementation of a Wideband Low Phase Noise PLL Frequency Synthesizer. J. Semicond., 2006, 27(10): 1838.

Yuan Liu, Yurong Liu, Yujuan He, Bin Li, Yunfei En, Wenxiao Fang. Low-frequency noise characteristics in the MOSFETs processed in 65 nm technology. J. Semicond., 2016, 37(6): 064012. doi: 10.1088/1674-4926/37/6/064012

Nan Chen, Shengxi Diao, Lu Huang, Xuefei Bai, Fujiang Lin. Design optimizations of phase noise, power consumption and frequency tuning for VCO. J. Semicond., 2013, 34(9): 095009. doi: 10.1088/1674-4926/34/9/095009

Yu Peng, Yan Jun, Shi Yin, Dai Fa Foster. A dual-band frequency synthesizer for CMMB application with low phase noise. J. Semicond., 2010, 31(9): 095001. doi: 10.1088/1674-4926/31/9/095001

Lei Xuemei, Wang Zhigong, Wang Keping, Li Wei. A novel wideband low phase noise 2 : 1 frequency divider. J. Semicond., 2010, 31(6): 065005. doi: 10.1088/1674-4926/31/6/065005

Sen Li, Jinguang Jiang, Xifeng Zhou, Jianghua Liu. A low phase noise and low spur PLL frequency synthesizer for GNSS receivers. J. Semicond., 2014, 35(1): 015004. doi: 10.1088/1674-4926/35/1/015004

Mingyi Chen, Xiaoji Chu, Peng Yu, Jun Yan, Yin Shi. A ΔΣ fractional-N frequency synthesizer for FM tuner using low noise filter and quantization noise suppression technique. J. Semicond., 2014, 35(7): 075003. doi: 10.1088/1674-4926/35/7/075003

Search

Advanced Search >>

GET CITATION

S Banerjee, M Mitra. Heterojunction DDR THz IMPATT diodes based on AlxGa1-xN/GaN material system[J]. J. Semicond., 2015, 36(6): 064002. doi: 10.1088/1674-4926/36/6/064002.

Export: BibTex EndNote

Article Metrics

Article views: 79 Times PDF downloads: 2 Times

History

Manuscript received: 22 November 2014 Manuscript revised: Online: Published: 01 June 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误