J. Semicond. > Volume 36 > Issue 6 > Article Number: 064004

Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region

K. Kacha 1, , F. Djeffal 1, 2, , H. Ferhati 1, , D. Arar 1, and M. Meguellati 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: We present a new approach based on the multi-trench technique to improve the electrical performances, which are the fill factor and the electrical efficiency. The key idea behind this approach is to introduce a new multi-trench region in the intrinsic layer, in order to modulate the total resistance of the solar cell. Based on 2-D numerical investigation and optimization of amorphous SiGe double-junction (a-Si:H/a-SiGe:H) thin film solar cells, in the present paper numerical models of electrical and optical parameters are developed to explain the impact of the multi-trench technique on the improvement of the double-junction solar cell electrical behavior for high performance photovoltaic applications. In this context, electrical characteristics of the proposed design are analyzed and compared with conventional amorphous silicon double-junction thin-film solar cells.

Key words: amorphousefficiencySiGethin-filmsolar cellmulti-trench

Abstract: We present a new approach based on the multi-trench technique to improve the electrical performances, which are the fill factor and the electrical efficiency. The key idea behind this approach is to introduce a new multi-trench region in the intrinsic layer, in order to modulate the total resistance of the solar cell. Based on 2-D numerical investigation and optimization of amorphous SiGe double-junction (a-Si:H/a-SiGe:H) thin film solar cells, in the present paper numerical models of electrical and optical parameters are developed to explain the impact of the multi-trench technique on the improvement of the double-junction solar cell electrical behavior for high performance photovoltaic applications. In this context, electrical characteristics of the proposed design are analyzed and compared with conventional amorphous silicon double-junction thin-film solar cells.

Key words: amorphousefficiencySiGethin-filmsolar cellmulti-trench



References:

[1]

Chang S T, Liao M H, Lin W K. Si/SiGe hetero-junction solar cell with optimization design and theoretical analysis[J]. Thin Solid Films, 2011, 519: 5022.

[2]

Khalid S, Jozef P, Matty C. Design, fabrication, and analysis of crystalline Si-SiGe heterostructure thin-film solar cells[J]. IEEE Trans Electron Devices, 1999, 46: 2103.

[3]

Kacha K, Djeffal F, Bentrcia T. Numerical investigation of the SiGe/Si heterostructure including Interfacial defects for photovoltaic applications[J]. Adv Mater Research J, 2014, 856: 188.

[4]

Daamia A, Zerraia A, Marchanda J J. Electrical defect study in thin-film SiGe/Si solar cells[J]. Mater Sci Semicond Processing, 2001, 4: 331.

[5]

Jeffrey Y, Arindam B, Subhendu G. Amorphous silicon based photvoltaics-from earth to the final frontier[J]. Solar Energy Materials & Solar Cells, 2003, 78: 597.

[6]

Bouzidi A, Hamzaoui H, Bouazzi A S. Analytic computation of the photocurrent density in a n-6H-SiC/p-Si/n-Si/p-Si0.8Ge0.2 multilayer solar cell[J]. Microelectron J, 2006, 37: 388.

[7]

Kabir M I, Zahari I, Kamaruzzaman S. Effect of structural variations in amorphous silicon based single and multi-junction solar cells from numerical analysis[J]. Solar Energy Materials & Solar Cells, 2010, 94(9): 1542.

[8]

Doo K Y, Soo H K, Hyeon S J. Functional patterns for thin-film-type amorphous silicon solar cells[J]. Jpn J Appl Phys, 2014, 53: 072301.

[9]

Daiji K, Shigeo Y, Yoichiro A. Quantitative measurement and design of texture morphology for high-efficiency thin-film silicon solar cells[J]. Jpn J Appl Phys, 2014, 53: 076501.

[10]

Fortes M, Comesan E, Rodriguez J A. Impact of series and shunt resistances in amorphous silicon thin film solar cells[J]. Solar Energy, 2014, 100: 114.

[11]

Atlas User's manual. Atlas User's manual: Device Simulation Software[J]. , 2012.

[1]

Chang S T, Liao M H, Lin W K. Si/SiGe hetero-junction solar cell with optimization design and theoretical analysis[J]. Thin Solid Films, 2011, 519: 5022.

[2]

Khalid S, Jozef P, Matty C. Design, fabrication, and analysis of crystalline Si-SiGe heterostructure thin-film solar cells[J]. IEEE Trans Electron Devices, 1999, 46: 2103.

[3]

Kacha K, Djeffal F, Bentrcia T. Numerical investigation of the SiGe/Si heterostructure including Interfacial defects for photovoltaic applications[J]. Adv Mater Research J, 2014, 856: 188.

[4]

Daamia A, Zerraia A, Marchanda J J. Electrical defect study in thin-film SiGe/Si solar cells[J]. Mater Sci Semicond Processing, 2001, 4: 331.

[5]

Jeffrey Y, Arindam B, Subhendu G. Amorphous silicon based photvoltaics-from earth to the final frontier[J]. Solar Energy Materials & Solar Cells, 2003, 78: 597.

[6]

Bouzidi A, Hamzaoui H, Bouazzi A S. Analytic computation of the photocurrent density in a n-6H-SiC/p-Si/n-Si/p-Si0.8Ge0.2 multilayer solar cell[J]. Microelectron J, 2006, 37: 388.

[7]

Kabir M I, Zahari I, Kamaruzzaman S. Effect of structural variations in amorphous silicon based single and multi-junction solar cells from numerical analysis[J]. Solar Energy Materials & Solar Cells, 2010, 94(9): 1542.

[8]

Doo K Y, Soo H K, Hyeon S J. Functional patterns for thin-film-type amorphous silicon solar cells[J]. Jpn J Appl Phys, 2014, 53: 072301.

[9]

Daiji K, Shigeo Y, Yoichiro A. Quantitative measurement and design of texture morphology for high-efficiency thin-film silicon solar cells[J]. Jpn J Appl Phys, 2014, 53: 076501.

[10]

Fortes M, Comesan E, Rodriguez J A. Impact of series and shunt resistances in amorphous silicon thin film solar cells[J]. Solar Energy, 2014, 100: 114.

[11]

Atlas User's manual. Atlas User's manual: Device Simulation Software[J]. , 2012.

[1]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[2]

Jin Dongyue, Zhang Wanrong, Shen Pei, Xie Hongyun, Wang Yang. Multi-Finger Power SiGe HBT with Non-Uniform Finger Spacing. J. Semicond., 2007, 28(10): 1527.

[3]

Zhang Zhenxing, Xie Erqing, Pan Xiaojun, Jia Lu, Han Weihua. Space-Charge-Limited Current Properties of Amorphous GaN Thin Films. J. Semicond., 2006, 27(S1): 113.

[4]

Zongcun Liang, Dianlei Wang, Yanbin Zhu. Effects of substrate characteristics on the passivation performance of ALD-Al2O3 thin film for high-efficiency solar cells. J. Semicond., 2014, 35(5): 054002. doi: 10.1088/1674-4926/35/5/054002

[5]

Xue Chunlai, Shi Wenhua, Yao Fei, Cheng Buwen, Wang Hongjie, Yu Jinzhong, Wang Qiming. A Multi-Finger Si1-xGex/Si Heterojunction Bipolar Transistor for Wireless Power Amplifier Applications. J. Semicond., 2007, 28(4): 496.

[6]

Abou El-Maaty M. Aly, A. Nasr. The effect of multi-intermediate bands on the behavior of an InAs1-xNx/GaAs1-ySby quantum dot solar cell. J. Semicond., 2015, 36(4): 042001. doi: 10.1088/1674-4926/36/4/042001

[7]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[8]

Hu Huiyong, Zhang Heming, Dai Xianying, Xuan Rongxi, Cui Xiaoying, Wang Qing, Jiang Tao. Transport Current Model of SiGe HBT. J. Semicond., 2006, 27(6): 1059.

[9]

Chen Lei, Ruan Ying, Ma Heliang, Lai Zongsheng. A 2.1–6 GHz SiGe BiCMOS low-noise amplifier design for a multi-mode wideband receiver. J. Semicond., 2010, 31(5): 055001. doi: 10.1088/1674-4926/31/5/055001

[10]

Yang Hongbin, Fan Yongliang, Zhang Xiangjiu. Strain and Annealing Effect of SiGe/Si Heterostructure in Limited Area Grown by MBE. J. Semicond., 2007, 28(8): 1226.

[11]

Zeng Yugang, Han Genquan, Yu Jinzhong. Growth of SiGe by D-UHV/CVD at Low Temperature. J. Semicond., 2008, 29(10): 1889.

[12]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[13]

Cheng Buwen, Yao Fei, Xue Chunlai, Zhang Jianguo, Li Chuanbo, Mao Rongwei, Zuo Yuhua, Luo Liping, Wang Qiming. Strain Compensation in SiGe by Boron Doping. J. Semicond., 2005, 26(S1): 39.

[14]

Xu Yang, Wang Fei, Xu Jun, Liu Zhihong, Qian Peixin. Two Kinds of Patterned SiGe Epitaxial Growth Technologies. J. Semicond., 2006, 27(S1): 389.

[15]

Chen Xinliang, Xu Buheng, Xue Junming, Zhao Ying, Zhang Xiaodan, Geng Xinhua. ZnO Thin Film Growth by Metal Organic Chemical Vapor Deposition and Its Back Contact Application in Solar Cells. J. Semicond., 2005, 26(12): 2363.

[16]

Yang Hongbin, Fan Yongliang. Effect of Si Intermediate Layer on High Relaxed SiGe Layer Grown Using Low Temperature Si Buffer. J. Semicond., 2006, 27(S1): 144.

[17]

Wang Jianbo, Xiang Bing, Lou Chaogang, Zhang Xiaobing, Lei Wei, Mu Hui, Sun Qiang. Calculation of the Efficiency of GaAs Quantum Well Solar Cells. J. Semicond., 2006, 27(6): 1038.

[18]

Toshihiro Miyata, Kyosuke Watanabe, Hiroki Tokunaga, Tadatsugu Minami. Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701

[19]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[20]

E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, M. Mikolasek. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond., 2014, 35(5): 054001. doi: 10.1088/1674-4926/35/5/054001

Search

Advanced Search >>

GET CITATION

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region[J]. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004.

Export: BibTex EndNote

Article Metrics

Article views: 498 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 15 November 2014 Manuscript revised: Online: Published: 01 June 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误