J. Semicond. > Volume 36 > Issue 7 > Article Number: 073004

Temperature sensor based on composite film of vanadium complex (VO2(3-fl)) and CNT

Kh. S. Karimov 1, 2, , M. Mahroof-Tahir 3, , M. Saleem 4, , M. Tariq Saeed Chani 5, and A. Khan Niaz 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A vanadium complex (VO2(3-fl)) and CNT composite film based temperature sensor is reported in this study. Surface-type silver electrodes were deposited on the glass substrates. A thin film of VO2(3-fl) and CNT composite was coated as a temperature-sensing material on the top of the pre-patterned Ag electrodes. The temperature-sensing principle of the sensor was based on the conductivity change of the coated sensing element upon heating or cooling processes. DC and AC (100 Hz) resistances of the temperature sensor decreased quasi-linearly with increasing the temperature in the range of 25-80 ℃. The overall resistance of the sensor decreases by 1.8-2.1 and 1.9-2.0 times at DC and AC voltage, respectively. The resistance temperature coefficients of the sensor were in the range of -(0.9-1.3)% and -(1.1-1.3)% at DC and AC voltage, respectively. The properties of the sensor studied in this work, make it beneficial to be used in the instruments for environmental monitoring of temperature.

Key words: CNTvanadium complexfilmtemperature sensorresistance

Abstract: A vanadium complex (VO2(3-fl)) and CNT composite film based temperature sensor is reported in this study. Surface-type silver electrodes were deposited on the glass substrates. A thin film of VO2(3-fl) and CNT composite was coated as a temperature-sensing material on the top of the pre-patterned Ag electrodes. The temperature-sensing principle of the sensor was based on the conductivity change of the coated sensing element upon heating or cooling processes. DC and AC (100 Hz) resistances of the temperature sensor decreased quasi-linearly with increasing the temperature in the range of 25-80 ℃. The overall resistance of the sensor decreases by 1.8-2.1 and 1.9-2.0 times at DC and AC voltage, respectively. The resistance temperature coefficients of the sensor were in the range of -(0.9-1.3)% and -(1.1-1.3)% at DC and AC voltage, respectively. The properties of the sensor studied in this work, make it beneficial to be used in the instruments for environmental monitoring of temperature.

Key words: CNTvanadium complexfilmtemperature sensorresistance



References:

[1]

Shimizu K I, Chinzei I, Nishiyama H. Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors[J]. Sensors Actuators B, 2009, 141: 410.

[2]

Wang C T, Chen M T. Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors[J]. Sensors Actuators B, 2010, 50: 360.

[3]

Carotta M C, Ferroni M, Gherardi S. Thick-film gas sensors based on vanadium-titanium oxide powders prepared by sol-gel synthesis[J]. J Europ Ceram Soc, 2004, 24: 1409.

[4]

Lavacchi A, Cortigiani B, Rovida G. Composition and structure of tin/vanadium oxide surfaces for chemical sensing applications[J]. Sensors Actuators B, 2000, 71: 123.

[5]

Zakharova G S, Volkov V L. Intercalation compounds based on vanadium (V) oxide xerogel[J]. Russian Chem Rev, 2003, 72: 311.

[6]

Schilling O, Colbow K. A mechanism for sensing reducing gases with vanadium pentoxide films[J]. Sensors Actuators B, 1994, 21: 151.

[7]

Guzman G. Vanadium dioxide as infrared active coating[J]. .

[8]

Chain E E. Optical properties of vanadium dioxide and vanadium pentoxide thin films[J]. Appl Opt, 1991, 30: 2782.

[9]

Parkin I P, Binions R, Piccirillo C. Thermochromic coatings for intelligent architectural glazing[J]. J Nano Res, 2008, 2: 1.

[10]

Roach W R. Holographic storage in VO2[J]. Appl Phys Lett, 1971, 19: 453.

[11]

Smith A W. Optical storage in VO2 films[J]. Appl Phys Lett, 1973, 23: 437.

[12]

Eden D D. Vanadium dioxide storage material[J]. Opt Eng, 1981, 20: 337.

[13]

Guzman G, Beteille F, Morineau R. Electrical switching in VO2 sol-gel films[J]. J Mat Chem, 1996, 6: 505.

[14]

Mitzi D B, Chondroudis K, Kagan C R. Organic-inorganic electronics[J]. IBM J Res Devel, 2001, 45: 29.

[15]

Reibold M, Paufler P, Levin A A. Materials: carbon nanotubes in an ancient Damascus sabre[J]. Nature, 2006, 444: 286.

[16]

Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56.

[17]

Grow R J, Wang Q, Cao J. Piezoresistance of carbon nanotubes on deformable thin-film membranes[J]. Appl Phys Lett, 2005, 86: 093104.

[18]

Saleem M, Karimov Kh S, Karieva Z M. Humidity sensing properties of CNT/OD/VETP nanocomposite films[J]. Physica E, 2010, 43: 28.

[19]

Cantalini C, Valentini L, Armentano I. Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD[J]. Sensors Actuators B, 2003, 95: 195.

[20]

Na P S, Kim H, So H M. Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors[J]. Appl Phys Lett, 2005, 87: 093101.

[21]

Rinkio M, Zavodchikova M Y, Torma P. Effect of humidity on the hysteresis of single walled carbon nanotube field-effect transistors[J]. Phys Status Solidi B, 2008, 245: 2315.

[22]

Tang D, Ci L, Zhou W. Effect of H2O adsorption on the electrical transport properties of double-walled carbon nanotubes[J]. Carbon, 2006, 44: 2155.

[23]

Varghese K, Kichambre P D, Gong D. Gas sensing characteristics of multi-wall carbon nanotubes[J]. Sensors Actuators B, 2001, 81: 32.

[24]

Friedman A L, Chun H, Heiman D. Investigation of electrical transport in hydrogenated multiwalled carbon nanotubes[J]. Physica B, 2011, 406: 841.

[25]

Kumar V, Bergman A A, Gorokhovsky A A. Formation of carbon nanofilms on diamond for all-carbon based temperature and chemical sensor application[J]. Carbon, 2011, 49: 1385.

[26]

Billinghurst M, Starner T. Wearable devices: new ways to manage information[J]. IEEE Computer, 1999, 32: 57.

[27]

Service R F. Electronic textiles charge ahead[J]. Science, 2003, 301: 909.

[28]

Park S, Jayaraman S. Enhancing the quality of life through wearable technology[J]. IEEE Eng Med Biol Mag, 2003, 22: 41.

[29]

Paradiso R, Gemignani A, Scilingo E P. Proc of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society[J]. Cancun, Mexico, 2003-3720.

[30]

Rossi D D, Lorussi F, Mazzoldi A. Sensors and sensing in biology and engineering[J]. Berlin: Springer Wien, 2003.

[31]

Sibinski M, Jakubowska M, Sloma M. Flexible temperature sensors on fibers[J]. Sensors, 2010, 10: 7934.

[32]

Zaitsev A M, Levine A M, Zaidi S H. Carbon nanowire-based temperature sensor[J]. Phys Status Solidi A, 2007, 204: 3574.

[33]

Saraiya A, Porwal D, Bajpai A N. Investigation of carbon nanotubes as low temperature sensors[J]. Synth Reacti Inorg Metal-Org Nano-Metal Chem, 2006, 36: 163.

[34]

Karimov Kh S, Tariq Saeed Chani M, Khalid F A. Carbon nanotubes film based temperature sensors[J]. Physica E, 2011, 43: 1701.

[35]

Karimov Kh S, Mahroof-Tahir M, Saleem M. Resistive temperature sensor based on vanadium complex (VO2(3-fl)) films[J]. Journal of Semiconductors, 2014, 35(9): 094001.

[36]

Dally J W, Riley W F, McConnell K G. Instrumentation for engineering measurements[J]. .

[37]

Croft A, Davison R, Hargreaves M. Engineering mathematics[J]. .

[38]

Brabec C J, Dyakonov V, Parisi J. Organic photovoltaics: concepts and realization[J]. Springer-Verlag, Berlin Heidelberg, 2003.

[39]

Bottger H, Bryksin V V. Hopping conductions in solids[J]. Berlin: VCH Publishers, Akademie-Verlag, 1985.

[40]

Irvine R G. Operational amplifiers characteristics and applications[J]. New Jersey: Prentice Hall, 1994.

[1]

Shimizu K I, Chinzei I, Nishiyama H. Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors[J]. Sensors Actuators B, 2009, 141: 410.

[2]

Wang C T, Chen M T. Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors[J]. Sensors Actuators B, 2010, 50: 360.

[3]

Carotta M C, Ferroni M, Gherardi S. Thick-film gas sensors based on vanadium-titanium oxide powders prepared by sol-gel synthesis[J]. J Europ Ceram Soc, 2004, 24: 1409.

[4]

Lavacchi A, Cortigiani B, Rovida G. Composition and structure of tin/vanadium oxide surfaces for chemical sensing applications[J]. Sensors Actuators B, 2000, 71: 123.

[5]

Zakharova G S, Volkov V L. Intercalation compounds based on vanadium (V) oxide xerogel[J]. Russian Chem Rev, 2003, 72: 311.

[6]

Schilling O, Colbow K. A mechanism for sensing reducing gases with vanadium pentoxide films[J]. Sensors Actuators B, 1994, 21: 151.

[7]

Guzman G. Vanadium dioxide as infrared active coating[J]. .

[8]

Chain E E. Optical properties of vanadium dioxide and vanadium pentoxide thin films[J]. Appl Opt, 1991, 30: 2782.

[9]

Parkin I P, Binions R, Piccirillo C. Thermochromic coatings for intelligent architectural glazing[J]. J Nano Res, 2008, 2: 1.

[10]

Roach W R. Holographic storage in VO2[J]. Appl Phys Lett, 1971, 19: 453.

[11]

Smith A W. Optical storage in VO2 films[J]. Appl Phys Lett, 1973, 23: 437.

[12]

Eden D D. Vanadium dioxide storage material[J]. Opt Eng, 1981, 20: 337.

[13]

Guzman G, Beteille F, Morineau R. Electrical switching in VO2 sol-gel films[J]. J Mat Chem, 1996, 6: 505.

[14]

Mitzi D B, Chondroudis K, Kagan C R. Organic-inorganic electronics[J]. IBM J Res Devel, 2001, 45: 29.

[15]

Reibold M, Paufler P, Levin A A. Materials: carbon nanotubes in an ancient Damascus sabre[J]. Nature, 2006, 444: 286.

[16]

Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56.

[17]

Grow R J, Wang Q, Cao J. Piezoresistance of carbon nanotubes on deformable thin-film membranes[J]. Appl Phys Lett, 2005, 86: 093104.

[18]

Saleem M, Karimov Kh S, Karieva Z M. Humidity sensing properties of CNT/OD/VETP nanocomposite films[J]. Physica E, 2010, 43: 28.

[19]

Cantalini C, Valentini L, Armentano I. Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD[J]. Sensors Actuators B, 2003, 95: 195.

[20]

Na P S, Kim H, So H M. Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors[J]. Appl Phys Lett, 2005, 87: 093101.

[21]

Rinkio M, Zavodchikova M Y, Torma P. Effect of humidity on the hysteresis of single walled carbon nanotube field-effect transistors[J]. Phys Status Solidi B, 2008, 245: 2315.

[22]

Tang D, Ci L, Zhou W. Effect of H2O adsorption on the electrical transport properties of double-walled carbon nanotubes[J]. Carbon, 2006, 44: 2155.

[23]

Varghese K, Kichambre P D, Gong D. Gas sensing characteristics of multi-wall carbon nanotubes[J]. Sensors Actuators B, 2001, 81: 32.

[24]

Friedman A L, Chun H, Heiman D. Investigation of electrical transport in hydrogenated multiwalled carbon nanotubes[J]. Physica B, 2011, 406: 841.

[25]

Kumar V, Bergman A A, Gorokhovsky A A. Formation of carbon nanofilms on diamond for all-carbon based temperature and chemical sensor application[J]. Carbon, 2011, 49: 1385.

[26]

Billinghurst M, Starner T. Wearable devices: new ways to manage information[J]. IEEE Computer, 1999, 32: 57.

[27]

Service R F. Electronic textiles charge ahead[J]. Science, 2003, 301: 909.

[28]

Park S, Jayaraman S. Enhancing the quality of life through wearable technology[J]. IEEE Eng Med Biol Mag, 2003, 22: 41.

[29]

Paradiso R, Gemignani A, Scilingo E P. Proc of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society[J]. Cancun, Mexico, 2003-3720.

[30]

Rossi D D, Lorussi F, Mazzoldi A. Sensors and sensing in biology and engineering[J]. Berlin: Springer Wien, 2003.

[31]

Sibinski M, Jakubowska M, Sloma M. Flexible temperature sensors on fibers[J]. Sensors, 2010, 10: 7934.

[32]

Zaitsev A M, Levine A M, Zaidi S H. Carbon nanowire-based temperature sensor[J]. Phys Status Solidi A, 2007, 204: 3574.

[33]

Saraiya A, Porwal D, Bajpai A N. Investigation of carbon nanotubes as low temperature sensors[J]. Synth Reacti Inorg Metal-Org Nano-Metal Chem, 2006, 36: 163.

[34]

Karimov Kh S, Tariq Saeed Chani M, Khalid F A. Carbon nanotubes film based temperature sensors[J]. Physica E, 2011, 43: 1701.

[35]

Karimov Kh S, Mahroof-Tahir M, Saleem M. Resistive temperature sensor based on vanadium complex (VO2(3-fl)) films[J]. Journal of Semiconductors, 2014, 35(9): 094001.

[36]

Dally J W, Riley W F, McConnell K G. Instrumentation for engineering measurements[J]. .

[37]

Croft A, Davison R, Hargreaves M. Engineering mathematics[J]. .

[38]

Brabec C J, Dyakonov V, Parisi J. Organic photovoltaics: concepts and realization[J]. Springer-Verlag, Berlin Heidelberg, 2003.

[39]

Bottger H, Bryksin V V. Hopping conductions in solids[J]. Berlin: VCH Publishers, Akademie-Verlag, 1985.

[40]

Irvine R G. Operational amplifiers characteristics and applications[J]. New Jersey: Prentice Hall, 1994.

[1]

Kh. S. Karimov, M. Saleem, M. Mahroof-Tahir, R. Akram, M.T. Saeed Chanee, A.K. Niaz. Resistive humidity sensor based on vanadium complex films. J. Semicond., 2014, 35(9): 094001. doi: 10.1088/1674-4926/35/9/094001

[2]

Liangbo Xie, Jiaxin Liu, Yao Wang, Guangjun Wen. A low-power CMOS smart temperature sensor for RFID application. J. Semicond., 2014, 35(11): 115002. doi: 10.1088/1674-4926/35/11/115002

[3]

Feng Xiaoxing, Wang Xin’an, Feng Jun, Ge Binjie, Zhang Xing. Silicon Temperature Sensor with Inaccuracy of ±0.3℃ from -55 to 125℃. J. Semicond., 2007, 28(12): 1972.

[4]

Jin Fei, Zhang Weijia, Jia Shiliang, Ding Zhaochong, Yan Lanqin, Wang Tianmin, Li Guohua. Monotonous Linearity Varying Stratified Nanocrystalline Silicon Films and as p-i-n Layer in Thin Film Solar Cells. J. Semicond., 2007, 28(S1): 333.

[5]

Zhang Xun, Wang Peng, Jin Dongming. A New Type of CMOS Temperature Sensor. J. Semicond., 2005, 26(11): 2202.

[6]

Feng Peng, Zhang Qi, Wu Nanjian. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18 μm standard CMOS process. J. Semicond., 2011, 32(11): 115013. doi: 10.1088/1674-4926/32/11/115013

[7]

Lin Saihua, Yang Huazhong. Design of a Novel All-CMOS Built-In Temperature Sensor. J. Semicond., 2006, 27(3): 551.

[8]

Chen Baojun, Tang Zhen'an, Yu Tiejun. Novel closed-form resistance formulae for rectangular interconnects. J. Semicond., 2011, 32(5): 054008. doi: 10.1088/1674-4926/32/5/054008

[9]

Chen Baojun, Tang Zhen'an, Yu Tiejun. A novel closed-form resistance model for trapezoidal interconnects. J. Semicond., 2010, 31(8): 084011. doi: 10.1088/1674-4926/31/8/084011

[10]

Zhang Xun, Wang Peng, Jin Dongming. Temperature Sensors Based on CMOS Sub-Threshold Characteristic. J. Semicond., 2006, 27(9): 1676.

[11]

Huang Qing'an, Liu Zutao, Li Weihua, Li Qiaoping. A Test System for the in situ Extraction of the Material Parameters of MEMS Thin Films. J. Semicond., 2006, 27(9): 1650.

[12]

Ahmed Chaouki Megherbi, Said Benramache, Abderrazak Guettaf. Backgating effect in GaAs FETs with a channel-semi-insulating substrate boundary. J. Semicond., 2014, 35(3): 034004. doi: 10.1088/1674-4926/35/3/034004

[13]

Hu Yi, Liu Yuling, Liu Xiaoyan, He Yangang, Wang Liran, Zhang Baoguo. Effect of alkaline slurry on the electric character of the pattern Cu wafer. J. Semicond., 2011, 32(7): 076002. doi: 10.1088/1674-4926/32/7/076002

[14]

Zhang Yueli, Zhang Wenjun. Analysis Design and Optimization of Si Inductors. J. Semicond., 2005, 26(S1): 268.

[15]

P. A. Bokhan, N. V. Fateev, I. V. Osinnykh, T. V. Malin, Dm. E. Zakrevsky, K. S. Zhuravlev, Xin Wei, Jian Li, Lianghui Chen. Light emission of heavily doped AlGaN structures under optical pumping. J. Semicond., 2018, 39(4): 043002. doi: 10.1088/1674-4926/39/4/043002

[16]

Tie Meng, Cheng Xu. A cross-coupled-structure-based temperature sensor with reduced process variation sensitivity. J. Semicond., 2009, 30(4): 045002. doi: 10.1088/1674-4926/30/4/045002

[17]

Jiang Hai, Lü Jian, Xu Jianhua, Jiang Yadong. Design of a CMOS Integrated Temperature Sensor Based on Dynamic Element Matching. J. Semicond., 2007, 28(11): 1824.

[18]

Kh. S. Karimov, Noshin Fatima, Khaulah Sulaiman, M. Mahroof Tahir, Zubair Ahmad, A. Mateen. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique. J. Semicond., 2015, 36(3): 034005. doi: 10.1088/1674-4926/36/3/034005

[19]

Liu Bingce, Liu Cihui, Xu Jun, Yi Bo. Temperature coefficients of grain boundary resistance variations in a ZnO/p-Si heterojunction. J. Semicond., 2010, 31(12): 122001. doi: 10.1088/1674-4926/31/12/122001

[20]

Cholho Jang, Zhizhen Ye, Jianguo Lü. Highly transparent low resistance Ga doped ZnO/Cu grid double layers prepared at room temperature. J. Semicond., 2015, 36(12): 123003. doi: 10.1088/1674-4926/36/12/123003

Search

Advanced Search >>

GET CITATION

Kh. S. Karimov, M. Mahroof-Tahir, M. Saleem, M. T. S. Chani, A. K. Niaz. Temperature sensor based on composite film of vanadium complex (VO2(3-fl)) and CNT[J]. J. Semicond., 2015, 36(7): 073004. doi: 10.1088/1674-4926/36/7/073004.

Export: BibTex EndNote

Article Metrics

Article views: 602 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 20 December 2014 Manuscript revised: Online: Published: 01 July 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误