J. Semicond. > Volume 36 > Issue 9 > Article Number: 095004

A novel pressure sensor calibration system based on a neural network

Xiaojun Peng 1, 2, , , Kuntao Yang 1, and Xiuhua Yuan 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.

Key words: nonlinear error correctioncomprehensive compensationcurve fittingneural networkhigh precision

Abstract: According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.

Key words: nonlinear error correctioncomprehensive compensationcurve fittingneural networkhigh precision



References:

[1]

Shao Jianjian, Li Weitao, Sun Cao. A digital background calibration algorithm of a pipeline ADC based on output code calculation[J]. Journal of Semiconductors, 2012, 33(11): 115010.

[2]

Ploemen I H J, Molengraft M J G. Hybrid modeling for mechanical systems: methodologies and applications[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1999, 121(2): 270.

[3]

Jing Xin, Zhuang Yiqi, Tang Hualian. A power-efficient 12-bit analog-to-digital converter with a novel constant-resistance CMOS input sampling switch[J]. Journal of Semiconductors, 2014, 35(2): 025002.

[4]

Xie Shilin, Chen Shenglai, Zhang Xinong. Neural network hybrid modeling method for transducer calibration[J]. J Mechanical Eng, 2010, 46(22): 6.

[5]

Green D L, Everhart J L, Rhode M N. Development and characterization of a low-pressure calibration system for hypersonic wind tunnels[J]. AIAA Paper, 2004.

[6]

Pasquale A, Pasquale D, Domenico G. ANN-based error reduction for experimentally modeled sensors[J]. IEEE Trans Instru & Mea, 2002, 51(1): 23.

[7]

Tian Sheping, Zhao Yang, Wei Hongyu. Nonlinear compensation of sensors based on BP neural network[J]. Journal of Test and Measurement Technology, 2007, 21(1): 86.

[8]

Hou Liqun, Tong Weiguo, He Tongxiang. The static errors comprehensive correcting method of sensors based on radial basis function neural network[J]. Journal of Transcluction Technology, 2004, 12(4): 643.

[9]

Peng Xiaojun, Feng Xuechao. Study on a measurement system of ocean depth[J]. Piezoelectrics & Acoustooptics, 2013, 35(2): 293.

[10]

Yang Yang, Zhao Xianli, Zhong Shun'an. Digital post-calibration of a 5-bit 1[J]. , 2012, 33(2): 025011-025011.

[1]

Shao Jianjian, Li Weitao, Sun Cao. A digital background calibration algorithm of a pipeline ADC based on output code calculation[J]. Journal of Semiconductors, 2012, 33(11): 115010.

[2]

Ploemen I H J, Molengraft M J G. Hybrid modeling for mechanical systems: methodologies and applications[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1999, 121(2): 270.

[3]

Jing Xin, Zhuang Yiqi, Tang Hualian. A power-efficient 12-bit analog-to-digital converter with a novel constant-resistance CMOS input sampling switch[J]. Journal of Semiconductors, 2014, 35(2): 025002.

[4]

Xie Shilin, Chen Shenglai, Zhang Xinong. Neural network hybrid modeling method for transducer calibration[J]. J Mechanical Eng, 2010, 46(22): 6.

[5]

Green D L, Everhart J L, Rhode M N. Development and characterization of a low-pressure calibration system for hypersonic wind tunnels[J]. AIAA Paper, 2004.

[6]

Pasquale A, Pasquale D, Domenico G. ANN-based error reduction for experimentally modeled sensors[J]. IEEE Trans Instru & Mea, 2002, 51(1): 23.

[7]

Tian Sheping, Zhao Yang, Wei Hongyu. Nonlinear compensation of sensors based on BP neural network[J]. Journal of Test and Measurement Technology, 2007, 21(1): 86.

[8]

Hou Liqun, Tong Weiguo, He Tongxiang. The static errors comprehensive correcting method of sensors based on radial basis function neural network[J]. Journal of Transcluction Technology, 2004, 12(4): 643.

[9]

Peng Xiaojun, Feng Xuechao. Study on a measurement system of ocean depth[J]. Piezoelectrics & Acoustooptics, 2013, 35(2): 293.

[10]

Yang Yang, Zhao Xianli, Zhong Shun'an. Digital post-calibration of a 5-bit 1[J]. , 2012, 33(2): 025011-025011.

[1]

Li Zunchao, Jiang Yaolin, Zhang Ruizhi. Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs. J. Semicond., 2006, 27(3): 438.

[2]

Ren Zheng, Shi Yanling, , Hu Shaojian, Jin Meng, Zhu Jun, Chen Shoumian. Optimization of BSIM3 I-V Modeling of High Voltage MOS Devices. J. Semicond., 2006, 27(6): 1073.

[3]

Zhang Chong, Yang Haigang, Wei Jinbao. A High Precision CMOS Opamp Suitable for ISFET Readout. J. Semicond., 2008, 29(4): 686.

[4]

Zhang Chong, Wu Qisong, Yin Tao, Yang Haigang. Noise and mismatch optimization for capacitive MEMS readout. J. Semicond., 2009, 30(11): 115003. doi: 10.1088/1674-4926/30/11/115003

[5]

Wu Qisong, Yang Haigang, Yin Tao, Zhang Chong. A high precision CMOS weak current readout circuit. J. Semicond., 2009, 30(7): 075011. doi: 10.1088/1674-4926/30/7/075011

[6]

Jin Song, Xuemeng Wang, Zhipeng Zhao, Wei Li, Tian Zhi. A survey of neural network accelerator with software development environments. J. Semicond., 2020, 41(2): 021403. doi: 10.1088/1674-4926/41/2/021403

[7]

Liu Linsheng. Improved Nonlinear Model of HEMTs with Independent Transconductance Tail-Off Fitting. J. Semicond., 2011, 32(2): 024004. doi: 10.1088/1674-4926/32/2/024004

[8]

Dong Linxi, Chen Jindan, Yan Haixia, Huo Weihong, Li Yongjie, Sun Lingling. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances. J. Semicond., 2009, 30(3): 034008. doi: 10.1088/1674-4926/30/3/034008

[9]

Dong Linxi, Yan Haixia, Huo Weihong, Xu Li, Li Yongjie, Sun Lingling. A novel MEMS inertial sensor with enhanced sensing capacitors. J. Semicond., 2009, 30(5): 054003. doi: 10.1088/1674-4926/30/5/054003

[10]

Xiao Shimao, Ma Chengyan, Ye Tianchun. A novel 2.95–3.65 GHz CMOS LC-VCO using tuning curve compensation. J. Semicond., 2009, 30(10): 105001. doi: 10.1088/1674-4926/30/10/105001

[11]

Guodong Ren, Shifang Zhao, Zhongshen Pu, Zhiqiang Wei. Compact trimming design of a high-precision reference. J. Semicond., 2014, 35(4): 045008. doi: 10.1088/1674-4926/35/4/045008

[12]

Chong Lu, Hongzhou Tan, Zhikui Duan, Yi Ding. A high-precision synchronization circuit for clock distribution. J. Semicond., 2015, 36(10): 105004. doi: 10.1088/1674-4926/36/10/105004

[13]

Huai Yongjin, Han Zhengsheng. Design of a High Precision Array Pulse Sensor in TCM. J. Semicond., 2008, 29(4): 701.

[14]

Niu Xinhuan, Tan Baimei, Zhao Xiaohong, Liu Yuling. High Precision Finishing Process for Sapphire Substrate Surface. J. Semicond., 2007, 28(S1): 48.

[15]

Cheng Luo, Man-Kit Sit, Hongxiang Fan, Shuanglong Liu, Wayne Luk, Ce Guo. Towards efficient deep neural network training by FPGA-based batch-level parallelism. J. Semicond., 2020, 41(2): 022403. doi: 10.1088/1674-4926/41/2/022403

[16]

Zhu Tiancheng, Yao Suying, Li Binqiao. A high precision programmable bandgap voltage reference design for high resolution ADC. J. Semicond., 2009, 30(7): 075005. doi: 10.1088/1674-4926/30/7/075005

[17]

Yang Yintang, Li Yani, Zhu Zhangming. A high precision high PSRR bandgap reference with thermal hysteresis protection. J. Semicond., 2010, 31(9): 095010. doi: 10.1088/1674-4926/31/9/095010

[18]

Wang Ying, Han Weihua, Yang Xiang, Zhang Renping, Zhang Yang, Yang Fuhua. An efficient dose-compensation method for proximity effect correction. J. Semicond., 2010, 31(8): 086001. doi: 10.1088/1674-4926/31/8/086001

[19]

Dai Guoding, Yu Feng, Wang Xuan, Li Weimin. Design and implementation of a high precision and wide range adjustable LED drive controller. J. Semicond., 2010, 31(2): 025010. doi: 10.1088/1674-4926/31/2/025010

[20]

Chunyou Su, Sheng Zhou, Liang Feng, Wei Zhang. Towards high performance low bitwidth training for deep neural networks. J. Semicond., 2020, 41(2): 022404. doi: 10.1088/1674-4926/41/2/022404

Search

Advanced Search >>

GET CITATION

X J Peng, K T Yang, X H Yuan. A novel pressure sensor calibration system based on a neural network[J]. J. Semicond., 2015, 36(9): 095004. doi: 10.1088/1674-4926/36/9/095004.

Export: BibTex EndNote

Article Metrics

Article views: 738 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 02 February 2015 Manuscript revised: Online: Published: 01 September 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误