J. Semicond. > Volume 37 > Issue 11 > Article Number: 115001

Non-equilibrium carrier capture, recombination and annealing in thick insulators and their impact on radiation hardness

G.I. Zebrev , , M.G. Drosdetsky and A.M. Galimov

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper describes an approach to prediction of the thick insulators' radiation response based on modeling of the charge yield, which is dependent on irradiation temperature, dose rate, and electric field magnitudes. Temperature behavior of the charge yield and degradation saturation due to the interface precursor depletion has been modeled and simulated. Competition between the time-dependent and true dose rate (ELDRS) effects has been simulated and discussed within a framework of the rate-equation-based mathematical model. It was shown that the precursor trap in the thick insulating oxides can be important at high dose rates. It was also shown that full filling of the shallow hole traps in the insulating oxide bulk can cause suppression of dose-rate sensitivity at relatively high dose rates, especially in thick insulators.

Key words: bipolar devicestotal dose effectsdose rate effectsELDRSinsulatorsmodeling

Abstract: This paper describes an approach to prediction of the thick insulators' radiation response based on modeling of the charge yield, which is dependent on irradiation temperature, dose rate, and electric field magnitudes. Temperature behavior of the charge yield and degradation saturation due to the interface precursor depletion has been modeled and simulated. Competition between the time-dependent and true dose rate (ELDRS) effects has been simulated and discussed within a framework of the rate-equation-based mathematical model. It was shown that the precursor trap in the thick insulating oxides can be important at high dose rates. It was also shown that full filling of the shallow hole traps in the insulating oxide bulk can cause suppression of dose-rate sensitivity at relatively high dose rates, especially in thick insulators.

Key words: bipolar devicestotal dose effectsdose rate effectsELDRSinsulatorsmodeling



References:

[1]

Fleetwood D M. Total ionizing dose effects in MOS and lowdose-rate-sensitive linear-bipolar devices[J]. IEEE Trans Nucl Sci, 2013, 60(3): 1706. doi: 10.1109/TNS.2013.2259260

[2]

Oldham T R. Basic mechanisms of TID and DDD response in MOS and bipolar microelectronics. NSREC Short Course, 2011

[3]

Schwank J R. Total-dose effects in MOS devices. NSREC Short Course, 2002

[4]

Hjalmarson H P, Pease R L, Witczak S C. Mechanisms for radiation dose-rate sensitivity of bipolar transistors[J]. IEEE Trans Nucl Sci, 2003, 50: 1901. doi: 10.1109/TNS.2003.821803

[5]

Zebrev G I, Pavlov D Y, Pershenkov V S. Radiation response of bipolar transistors at various irradiation temperatures and electric biases[J]. IEEE Trans Nucl Sci, 2006, 53(4): 1981. doi: 10.1109/TNS.2006.877851

[6]

Zebrev G I. Modeling and simulation of the enhanced low-doserate sensitivity of thick isolating layers in advanced ICs[J]. Russian Microelectronics, 2006, 35(3): 177. doi: 10.1134/S1063739706030061

[7]

Zebrev G I, Gorbunov M S. Modeling of radiation-induced leakage and low dose-rate effects in thick edge isolation of modern MOSFETs[J]. IEEE Trans Nucl Sci, 2009, 56(4): 2230. doi: 10.1109/TNS.2009.2016096

[8]

http://www.iue.tuwien.ac.at/phd/park/node32.html

[9]

Johnston A H, Swimm R T, Thorbourn D O. Total dose effects on bipolar integrated circuits at low temperature[J]. IEEE Trans Nucl Sci, 2012, 59(6): 2995. doi: 10.1109/TNS.2012.2219592

[10]

Johnston A H, Swimm R T, Thorbourn D O. Charge yield at low electric fields:considerations for bipolar integrated circuits[J]. IEEE Trans Nucl Sci, 2013, 60(6): 4488. doi: 10.1109/TNS.2013.2283515

[11]

Johnston A H, Swimm R T, Thorbourn D O. Field dependence of charge yield in silicon dioxide:considerations for bipolar integrated circuits[J]. IEEE Trans Nucl Sci, 2014, 61(6): 2818. doi: 10.1109/TNS.2014.2367512

[12]

Hughes R C. Carrier-carrier transport phenomena in amorphous SiO2:direct measurement of the drift mobility and lifetime[J]. Phys Rev Lett, 1973, 30(26): 1333. doi: 10.1103/PhysRevLett.30.1333

[13]

McLean F B, Boesch H E Jr, McGarrity J M. Hole transport and recovery characteristics of gate insulators[J]. IEEE Trans Nucl Sci, 1976, 23(6): 1506. doi: 10.1109/TNS.1976.4328530

[14]

Adell P C, Esqueda I S, Barnaby H J. Impact of low temperatures on the total ionizing dose response and ELDRS in gated lateral PNP BJTs[J]. IEEE Trans Nucl Sci, 2012, 59(6): 3081. doi: 10.1109/TNS.2012.2224372

[15]

Saks N S, Klein R B, Griscom D L. Formation of interface traps in MOSFETS during annealing following low temperature irradiation[J]. IEEE Trans Nucl Sci, 1987, 35(6): 1234.

[16]

Boesch H E, McLean F B. Hole transport and trapping in field oxides[J]. IEEE Trans Nucl Sci, 1985, 32(6): 3940. doi: 10.1109/TNS.1985.4334047

[17]

McLean F B, Ausman G A Jr, Boesch H E Jr. Application of stochastic hopping transport to hole conduction in amorphous SiO2[J]. J Appl Phys, 1976, 47: 1529. doi: 10.1063/1.322767

[18]

Scher H, Montroll E W. Anomalous transit-time dispersion in amorphous solids[J]. Phys Rev B, 1975, 12(6): 2455.

[19]

Drosdetsky M G, Zebrev G I, Galimov A M. Physical mechanisms of radiation response in thick isolation oxides for different temperatures and dose rates[J]. Proceedings of 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 2015: 1.

[20]

Ma T P, Dressendorfer P V. Radiation effects in MOS devices and integrated circuits. New-York:John Wiley & Sons, 1988

[21]

Woods M, Williams R. Hole traps in silicon dioxide[J]. J Appl Phys, 1976, 47(3): 1082. doi: 10.1063/1.322730

[22]

Boch J, Saigne F, Ducret S. Total dose effects on bipolar integrated circuits:characterization of the saturation region[J]. IEEE Trans Nucl Sci, 2004, 51(6): 3225. doi: 10.1109/TNS.2004.839143

[23]

Zebrev G I, Drosdetsky M G, Galimov A M. Modeling and simulation of dose effects in bipolar analog integrated circuits[J]. International Conference on Micro-and Nano-Electronics, 2014: 94401C.

[24]

Zebrev G I, Petrov A S, Useinov R G. Simulation of bipolar transistor degradation at various dose rates and electric modes for high dose conditions[J]. IEEE Trans Nucl Sci, 2014, 61(4): 1785. doi: 10.1109/TNS.2014.2315672

[25]

Zhao Qifeng, Zhuang Yiqi, Bao Junlin. Model of radiationinduced gain degradation of NPN bipolar junction transistor at different dose rates[J]. Journal of Semiconductors, 2015, 36(6): 064007. doi: 10.1088/1674-4926/36/6/064007

[1]

Fleetwood D M. Total ionizing dose effects in MOS and lowdose-rate-sensitive linear-bipolar devices[J]. IEEE Trans Nucl Sci, 2013, 60(3): 1706. doi: 10.1109/TNS.2013.2259260

[2]

Oldham T R. Basic mechanisms of TID and DDD response in MOS and bipolar microelectronics. NSREC Short Course, 2011

[3]

Schwank J R. Total-dose effects in MOS devices. NSREC Short Course, 2002

[4]

Hjalmarson H P, Pease R L, Witczak S C. Mechanisms for radiation dose-rate sensitivity of bipolar transistors[J]. IEEE Trans Nucl Sci, 2003, 50: 1901. doi: 10.1109/TNS.2003.821803

[5]

Zebrev G I, Pavlov D Y, Pershenkov V S. Radiation response of bipolar transistors at various irradiation temperatures and electric biases[J]. IEEE Trans Nucl Sci, 2006, 53(4): 1981. doi: 10.1109/TNS.2006.877851

[6]

Zebrev G I. Modeling and simulation of the enhanced low-doserate sensitivity of thick isolating layers in advanced ICs[J]. Russian Microelectronics, 2006, 35(3): 177. doi: 10.1134/S1063739706030061

[7]

Zebrev G I, Gorbunov M S. Modeling of radiation-induced leakage and low dose-rate effects in thick edge isolation of modern MOSFETs[J]. IEEE Trans Nucl Sci, 2009, 56(4): 2230. doi: 10.1109/TNS.2009.2016096

[8]

http://www.iue.tuwien.ac.at/phd/park/node32.html

[9]

Johnston A H, Swimm R T, Thorbourn D O. Total dose effects on bipolar integrated circuits at low temperature[J]. IEEE Trans Nucl Sci, 2012, 59(6): 2995. doi: 10.1109/TNS.2012.2219592

[10]

Johnston A H, Swimm R T, Thorbourn D O. Charge yield at low electric fields:considerations for bipolar integrated circuits[J]. IEEE Trans Nucl Sci, 2013, 60(6): 4488. doi: 10.1109/TNS.2013.2283515

[11]

Johnston A H, Swimm R T, Thorbourn D O. Field dependence of charge yield in silicon dioxide:considerations for bipolar integrated circuits[J]. IEEE Trans Nucl Sci, 2014, 61(6): 2818. doi: 10.1109/TNS.2014.2367512

[12]

Hughes R C. Carrier-carrier transport phenomena in amorphous SiO2:direct measurement of the drift mobility and lifetime[J]. Phys Rev Lett, 1973, 30(26): 1333. doi: 10.1103/PhysRevLett.30.1333

[13]

McLean F B, Boesch H E Jr, McGarrity J M. Hole transport and recovery characteristics of gate insulators[J]. IEEE Trans Nucl Sci, 1976, 23(6): 1506. doi: 10.1109/TNS.1976.4328530

[14]

Adell P C, Esqueda I S, Barnaby H J. Impact of low temperatures on the total ionizing dose response and ELDRS in gated lateral PNP BJTs[J]. IEEE Trans Nucl Sci, 2012, 59(6): 3081. doi: 10.1109/TNS.2012.2224372

[15]

Saks N S, Klein R B, Griscom D L. Formation of interface traps in MOSFETS during annealing following low temperature irradiation[J]. IEEE Trans Nucl Sci, 1987, 35(6): 1234.

[16]

Boesch H E, McLean F B. Hole transport and trapping in field oxides[J]. IEEE Trans Nucl Sci, 1985, 32(6): 3940. doi: 10.1109/TNS.1985.4334047

[17]

McLean F B, Ausman G A Jr, Boesch H E Jr. Application of stochastic hopping transport to hole conduction in amorphous SiO2[J]. J Appl Phys, 1976, 47: 1529. doi: 10.1063/1.322767

[18]

Scher H, Montroll E W. Anomalous transit-time dispersion in amorphous solids[J]. Phys Rev B, 1975, 12(6): 2455.

[19]

Drosdetsky M G, Zebrev G I, Galimov A M. Physical mechanisms of radiation response in thick isolation oxides for different temperatures and dose rates[J]. Proceedings of 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 2015: 1.

[20]

Ma T P, Dressendorfer P V. Radiation effects in MOS devices and integrated circuits. New-York:John Wiley & Sons, 1988

[21]

Woods M, Williams R. Hole traps in silicon dioxide[J]. J Appl Phys, 1976, 47(3): 1082. doi: 10.1063/1.322730

[22]

Boch J, Saigne F, Ducret S. Total dose effects on bipolar integrated circuits:characterization of the saturation region[J]. IEEE Trans Nucl Sci, 2004, 51(6): 3225. doi: 10.1109/TNS.2004.839143

[23]

Zebrev G I, Drosdetsky M G, Galimov A M. Modeling and simulation of dose effects in bipolar analog integrated circuits[J]. International Conference on Micro-and Nano-Electronics, 2014: 94401C.

[24]

Zebrev G I, Petrov A S, Useinov R G. Simulation of bipolar transistor degradation at various dose rates and electric modes for high dose conditions[J]. IEEE Trans Nucl Sci, 2014, 61(4): 1785. doi: 10.1109/TNS.2014.2315672

[25]

Zhao Qifeng, Zhuang Yiqi, Bao Junlin. Model of radiationinduced gain degradation of NPN bipolar junction transistor at different dose rates[J]. Journal of Semiconductors, 2015, 36(6): 064007. doi: 10.1088/1674-4926/36/6/064007

[1]

Wang Yongguang, Zhao Yongwu. Modeling the Effects of Adhesion Force on the Molecular-Scale Removal Mechanism in the Chemical Mechanical Polishing of Wafer. J. Semicond., 2007, 28(12): 2018.

[2]

Gao Bo, Yu Xuefeng, Ren Diyuan, Liu Gang, Wang Yiyuan, Sun Jing, Cui Jiangwei. Total ionizing dose effects and annealing behavior for domestic VDMOS devices. J. Semicond., 2010, 31(4): 044007. doi: 10.1088/1674-4926/31/4/044007

[3]

Wang Yiyuan, Lu Wu, Ren Diyuan, Guo Qi, Yu Xuefeng, Gao Bo. The enhanced low dose rate sensitivity of a linear voltage regulator with different biases. J. Semicond., 2011, 32(3): 034007. doi: 10.1088/1674-4926/32/3/034007

[4]

Liu Dan, Chen Xiaojuan, Liu Xinyu, Wu Dexin. A 22-Element Small-Signal Model of GaN HEMT Devices. J. Semicond., 2007, 28(9): 1438.

[5]

Ge Binjie, Wang Xin'an, Zhang Xing, Feng Xiaoxing, Wang Qingqin. Sigma–delta modulator modeling analysis and design. J. Semicond., 2010, 31(9): 095003. doi: 10.1088/1674-4926/31/9/095003

[6]

Liu Jun, Sun Lingling, Xu Xiaojun. RF-CMOS Modeling:RF-MOSFET Modeling for Low Power Applications. J. Semicond., 2007, 28(1): 131.

[7]

Lu Wu, Ren Diyuan, Zheng Yuzhan, Guo Qi, Yu Xuefeng. An Accelerated Simulation Method for ELDRS of Bipolar Operational Amplifiers Using a Dose-Rate Switching Experiment. J. Semicond., 2008, 29(7): 1286.

[8]

Lu Jing, Wang Yan, Ma Long, Yu Zhiping. A New Small-Signal Modeling and Extraction Method in AlGaN/GaN HEMTs. J. Semicond., 2007, 28(4): 567.

[9]

Jiangfeng Du, Peng Xu, Kang Wang, Chenggong Yin, Yang Liu, Zhihong Feng, Shaobo Dun, Qi Yu. Small signal modeling of AlGaN/GaN HEMTs with consideration of CPW capacitances. J. Semicond., 2015, 36(3): 034009. doi: 10.1088/1674-4926/36/3/034009

[10]

Jin Xiaoshi, Liu Xi, Wu Meile, Chuai Rongyan, Jung-Hee Lee, Jong-Ho Lee. Modeling of subthreshold characteristics for undoped and doped deep nanoscale short channel double-gate MOSFETs. J. Semicond., 2012, 33(12): 124003. doi: 10.1088/1674-4926/33/12/124003

[11]

Jia Zhang, Haigang Yang, Jiabin Sun, Le Yu, Yuanfeng Wei. Modeling of enclosed-gate layout transistors as ESD protection device based on conformal mapping method. J. Semicond., 2014, 35(8): 085001. doi: 10.1088/1674-4926/35/8/085001

[12]

Liu Jun, Sun Lingling, Xu Xiaojun. RF-CMOS Modeling:Parasitic Analysis for MOST On-Wafer Test Structure. J. Semicond., 2007, 28(2): 246.

[13]

S. Poorvasha, B. Lakshmi. Investigation and statistical modeling of InAs-based double gate tunnel FETs for RF performance enhancement. J. Semicond., 2018, 39(5): 054001. doi: 10.1088/1674-4926/39/5/054001

[14]

Meng Zhiqin, Hao Yue, Tang Yu, Ma Xiaohua, Zhu Zhiwei, Li Yongkun. Total Ionizing Dose Effects of Deep Submicron nMOSFET Devices. J. Semicond., 2007, 28(2): 241.

[15]

Yuanfu Zhao, Liyan Liu, Xiaohui Liu, Xiaofeng Jin, Xiang Li. Radiation hardened design and analysis of radiation effect for scientific CMOS image sensor. J. Semicond., 2015, 36(11): 114007. doi: 10.1088/1674-4926/36/11/114007

[16]

Xia Jun, Wang Zhigong, Wu Xiushan, Li Wei. Analysis and Modeling of Broadband CMOS Monolithic Balun up to Millimeter-Wave Frequencies. J. Semicond., 2008, 29(3): 467.

[17]

Baoping He, Zujun Wang, Jiangkun Sheng, Shaoyan Huang. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices. J. Semicond., 2016, 37(12): 124003. doi: 10.1088/1674-4926/37/12/124003

[18]

Le Yu, Yingkui Zheng, Sheng Zhang, Lei Pang, Ke Wei, Xiaohua Ma. Small-signal model parameter extraction for AlGaN/GaN HEMT. J. Semicond., 2016, 37(3): 034003. doi: 10.1088/1674-4926/37/3/034003

[19]

Muhammad Nawaz, Ashfaq Ahmad. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells. J. Semicond., 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001

[20]

Zhiqun Cheng, Minshi Jia, Ya Luan, Xinxiang Lian. Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure. J. Semicond., 2014, 35(12): 125005. doi: 10.1088/1674-4926/35/12/125005

Search

Advanced Search >>

GET CITATION

G.I. Zebrev, M.G. Drosdetsky, A.M. Galimov. Non-equilibrium carrier capture, recombination and annealing in thick insulators and their impact on radiation hardness[J]. J. Semicond., 2016, 37(11): 115001. doi: 10.1088/1674-4926/37/11/115001.

Export: BibTex EndNote

Article Metrics

Article views: 319 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 22 February 2016 Manuscript revised: 17 May 2016 Online: Published: 01 November 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误