J. Semicond. > Volume 37 > Issue 11 > Article Number: 115004

A long lifetime, low error rate RRAM design with self-repair module

Zhiqiang You , , Fei Hu , Liming Huang , Peng Liu , Jishun Kuang and Shiying Li

+ Author Affilications + Find other works by these authors

PDF

Abstract: Resistive random access memory (RRAM) is one of the promising candidates for future universal memory. However, it suffers from serious error rate and endurance problems. Therefore, exploring a technical solution is greatly demanded to enhance endurance and reduce error rate. In this paper, we propose a reliable RRAM architecture that includes two reliability modules: error correction code (ECC) and self-repair modules. The ECC module is used to detect errors and decrease error rate. The self-repair module, which is proposed for the first time for RRAM, can get the information of error bits and repair wear-out cells by a repair voltage. Simulation results show that the proposed architecture can achieve lowest error rate and longest lifetime compared to previous reliable designs.

Key words: self-repairECCRRAMmemristor

Abstract: Resistive random access memory (RRAM) is one of the promising candidates for future universal memory. However, it suffers from serious error rate and endurance problems. Therefore, exploring a technical solution is greatly demanded to enhance endurance and reduce error rate. In this paper, we propose a reliable RRAM architecture that includes two reliability modules: error correction code (ECC) and self-repair modules. The ECC module is used to detect errors and decrease error rate. The self-repair module, which is proposed for the first time for RRAM, can get the information of error bits and repair wear-out cells by a repair voltage. Simulation results show that the proposed architecture can achieve lowest error rate and longest lifetime compared to previous reliable designs.

Key words: self-repairECCRRAMmemristor



References:

[1]

Strukov D B, Snider G S, Stewart D R. The missing memristor found[J]. Nature, 2008, 453: 80. doi: 10.1038/nature06932

[2]

Niu D, Xiao Y, Xie Y. Low power memristor-based ReRAM design with error correcting code[J]. 17th Asia and South Pacific Design Automation Conference, 2012: 79.

[3]

Sun Pengxiao, Liu Su, Li Ling. Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM[J]. Journal of Semiconductors, 2014, 35(10): 104007. doi: 10.1088/1674-4926/35/10/104007

[4]

Chen Y S, Lee H Y, Chen P S. Challenges and opportunities for HfOx based resistive random access memory[J]. 2011 IEEE International Electron Devices Meeting (IEDM), 2011: 31.

[5]

Schechter S, Loh G H, Straus K. Use ECP, not ECC, for hard failures in resistive memories[J]. ACM SIGARCH Computer Architecture News, ACM, 2010, 38(3): 141. doi: 10.1145/1816038

[6]

Yoon D H, Muralimanohar N, Chang J. FREE-p:protecting non-volatile memory against both hard and soft errors[J]. 2011 IEEE 17th International Symposium on High Performance Computer Architecture (HPCA), 2011: 466.

[7]

Ghofrani A, Lastras-Montano M A, Cheng K T. Towards data reliable crossbar-based memristive memories[J]. 2013 IEEE International Test Conference (ITC), 2013: 14.

[8]

Chen B, Lu Y, Gao B. Physical mechanisms of endurance degradation in TMO-RRAM[J]. 2011 IEEE International Electron Devices Meeting (IEDM), 2011: 12.

[9]

Huang P Y, Chen B, Wang Y J. Analytic model of endurance degradation and its practical applications for operation scheme optimization in metal oxide based RRAM[J]. 2013 IEEE International Electron Devices Meeting (IEDM), 2013: 22.

[10]

Chen Y Y, Govoreanu B, Goux L. Balancing set/reset pulse for endurance in 1T1R bipolar RRAM[J]. IEEE Trans Electron Devices, 2012, 59(12): 3243. doi: 10.1109/TED.2012.2218607

[11]

Kim S Y, Baek J M, Seo D J. Power-efficient fast write and hidden refresh of ReRAM using an ADC-based sense amplifier[J]. IEEE Trans Circuits Syst Ⅱ, 2013, 60(11): 776.

[12]

Lu Jinglong, Luo Jing, Zhao Hongpeng. Optimal migration route of Cu in HfO2[J]. Journal of Semiconductors, 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001

[13]

Zhao Yuanyang, Wang Jiayu, Xu Jianbin. Metal dopants in HfO2-based RRAM:first principle study[J]. Journal of Semiconductors, 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002

[14]

Liu P, You Z, Kuang J. Logic operation-based DFT method and 1R memristive crossbar march-like test algorithm[J]. IEICE Electronics Express, 2015, 12(23): 20150839. doi: 10.1587/elex.12.20150839

[1]

Strukov D B, Snider G S, Stewart D R. The missing memristor found[J]. Nature, 2008, 453: 80. doi: 10.1038/nature06932

[2]

Niu D, Xiao Y, Xie Y. Low power memristor-based ReRAM design with error correcting code[J]. 17th Asia and South Pacific Design Automation Conference, 2012: 79.

[3]

Sun Pengxiao, Liu Su, Li Ling. Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM[J]. Journal of Semiconductors, 2014, 35(10): 104007. doi: 10.1088/1674-4926/35/10/104007

[4]

Chen Y S, Lee H Y, Chen P S. Challenges and opportunities for HfOx based resistive random access memory[J]. 2011 IEEE International Electron Devices Meeting (IEDM), 2011: 31.

[5]

Schechter S, Loh G H, Straus K. Use ECP, not ECC, for hard failures in resistive memories[J]. ACM SIGARCH Computer Architecture News, ACM, 2010, 38(3): 141. doi: 10.1145/1816038

[6]

Yoon D H, Muralimanohar N, Chang J. FREE-p:protecting non-volatile memory against both hard and soft errors[J]. 2011 IEEE 17th International Symposium on High Performance Computer Architecture (HPCA), 2011: 466.

[7]

Ghofrani A, Lastras-Montano M A, Cheng K T. Towards data reliable crossbar-based memristive memories[J]. 2013 IEEE International Test Conference (ITC), 2013: 14.

[8]

Chen B, Lu Y, Gao B. Physical mechanisms of endurance degradation in TMO-RRAM[J]. 2011 IEEE International Electron Devices Meeting (IEDM), 2011: 12.

[9]

Huang P Y, Chen B, Wang Y J. Analytic model of endurance degradation and its practical applications for operation scheme optimization in metal oxide based RRAM[J]. 2013 IEEE International Electron Devices Meeting (IEDM), 2013: 22.

[10]

Chen Y Y, Govoreanu B, Goux L. Balancing set/reset pulse for endurance in 1T1R bipolar RRAM[J]. IEEE Trans Electron Devices, 2012, 59(12): 3243. doi: 10.1109/TED.2012.2218607

[11]

Kim S Y, Baek J M, Seo D J. Power-efficient fast write and hidden refresh of ReRAM using an ADC-based sense amplifier[J]. IEEE Trans Circuits Syst Ⅱ, 2013, 60(11): 776.

[12]

Lu Jinglong, Luo Jing, Zhao Hongpeng. Optimal migration route of Cu in HfO2[J]. Journal of Semiconductors, 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001

[13]

Zhao Yuanyang, Wang Jiayu, Xu Jianbin. Metal dopants in HfO2-based RRAM:first principle study[J]. Journal of Semiconductors, 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002

[14]

Liu P, You Z, Kuang J. Logic operation-based DFT method and 1R memristive crossbar march-like test algorithm[J]. IEICE Electronics Express, 2015, 12(23): 20150839. doi: 10.1587/elex.12.20150839

Wei Wu, Ning Deng. Memristor interpretations based on constitutive relations. J. Semicond., 2017, 38(10): 104005. doi: 10.1088/1674-4926/38/10/104005

Patrick W. C. Ho, Haider Abbas F. Almurib, T. Nandha Kumar. Memristive SRAM cell of seven transistors and one memristor. J. Semicond., 2016, 37(10): 104002. doi: 10.1088/1674-4926/37/10/104002

Jeetendra Singh, Balwinder Raj. Comparative analysis of memristor models and memories design. J. Semicond., 2018, 39(7): 074006. doi: 10.1088/1674-4926/39/7/074006

Yuanyang Zhao, Jiayu Wang, Jianbin Xu, Fei Yang, Qi Liu, Yuehua Dai. Metal dopants in HfO2-based RRAM:first principle study. J. Semicond., 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002

Jin Yang, Yuehua Dai, Shibin Lu, Xianwei Jiang, Feifei Wang, Junning Chen. Physical mechanism of resistance switching in the co-doped RRAM. J. Semicond., 2017, 38(1): 014008. doi: 10.1088/1674-4926/38/1/014008

Qiang Zhao, Maoxiu Zhou, Wei Zhang, Qi Liu, Xiaofeng Li, Ming Liu, Yuehua Dai. Effects of interaction between defects on the uniformity of doping HfO2-based RRAM:a first principle study. J. Semicond., 2013, 34(3): 032001. doi: 10.1088/1674-4926/34/3/032001

Xi Liu, Qian Liu, Xiaoshi Jin, Yongrui Zhao, Jong-Ho Lee. Negative voltage bandgap reference with multilevel curvature compensation technique. J. Semicond., 2016, 37(5): 055008. doi: 10.1088/1674-4926/37/5/055008

Jinlong Lu, Jing Luo, Hongpeng Zhao, Jin Yang, Xianwei Jiang, Qi Liu, Xiaofeng Li, Yuehua Dai. Optimal migration route of Cu in HfO2. J. Semicond., 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001

Liu Qi, Long Shibing, Guan Weihua, Zhang Sen, Liu Ming, Chen Junning. Unipolar resistive switching of Au+-implanted ZrO2 films. J. Semicond., 2009, 30(4): 042001. doi: 10.1088/1674-4926/30/4/042001

Dongbin Zhu, Yi Li, Wensheng Shen, Zheng Zhou, Lifeng Liu, Xing Zhang. Resistive random access memory and its applications in storage and nonvolatile logic. J. Semicond., 2017, 38(7): 071002. doi: 10.1088/1674-4926/38/7/071002

Wei Wu, Ning Deng. Electro-magnetic interpretation of four-element torus. J. Semicond., 2017, 38(11): 114008. doi: 10.1088/1674-4926/38/11/114008

Yanzhou Sun, Xiaoqian Liu, Dati Su, Huibin Yang. Research on memory characteristics of microcavity dielectric barrier discharge. J. Semicond., 2018, 39(10): 1.

S. S. Shinde, T. D. Dongle. Modelling of nanostructured TiO2-based memristors. J. Semicond., 2015, 36(3): 034001. doi: 10.1088/1674-4926/36/3/034001

Ma Ziwen, Tang Zirong, Liao Guanglan, Shi Tielin. Criterion of Microroughness for Self-Propagating Wafer Bonding. J. Semicond., 2007, 28(3): 465.

Jia Li, Cui Yu, Li Wang, Qingbin Liu, Zezhao He, Shujun Cai, Zhihong Feng. Self-aligned graphene field-effect transistors on SiC (0001) substrates with self-oxidized gate dielectric. J. Semicond., 2014, 35(7): 074006. doi: 10.1088/1674-4926/35/7/074006

Hu Hao, Chen Xingbi. A novel high speed lateral IGBT with a self-driven second gate. J. Semicond., 2012, 33(3): 034004. doi: 10.1088/1674-4926/33/3/034004

Li Xianjie, Cai Daomin, Zhao Yonglin, Wang Quanshu, Zhou Zhou, Zeng Qingming. Design and Process for Self-Aligned InP/InGaAs SHBT Structure. J. Semicond., 2005, 26(13): 136.

Li Fanghua, Jiang Zuimin. Growth and Shape Preservation of Self-Assembled SiGe Quantum Rings. J. Semicond., 2006, 27(13): 148.

W. Nakwaski, R.P. Sarzała. Comprehensive and fully self-consistent modeling of modern semiconductor lasers. J. Semicond., 2016, 37(2): 024001. doi: 10.1088/1674-4926/37/2/024001

Sun Lin, Yang Wenwei, Xiang Cailan, Yu Zhiping, Tian Lilin. A Broyden Method for Self-Consistent Solution of Schrdinger and Poisson Equations. J. Semicond., 2005, 26(12): 2344.

Search

Advanced Search >>

GET CITATION

Z Q You, F Hu, L M Huang, P Liu, J S Kuang, S Y Li. A long lifetime, low error rate RRAM design with self-repair module[J]. J. Semicond., 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004.

Export: BibTex EndNote

Article Metrics

Article views: 324 Times PDF downloads: 5 Times

History

Manuscript received: 21 March 2016 Manuscript revised: 12 May 2016 Online: Published: 01 November 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误