J. Semicond. > Volume 37 > Issue 2 > Article Number: 026002

The effect of nitridation and sulfur passivation for In0.53Ga0.47As surfaces on their Al/Al2O3/InGaAs MOS capacitors properties

Zizeng Lin 1, 2, , Mingmin Cao 1, 2, , Shengkai Wang 2, , Qi Li 1, , Gongli Xiao 1, , Xi Gao 1, , Honggang Liu 2, and Haiou Li 1, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The impact of nitridation and sulfur passivation for In0.53Ga0.47As surfaces on the Al/Al2O3/InGaAs MOS capacitors properties was investigated by comparing the characteristics of frequency dispersion and hysteresis, calculating the Dit and Δ Nbt values, and analyzing the interface traps and the leakage current. The results showed that both of the methods could form a passivation-layer on the InGaAs surface. The samples treated by N2 plasma could obtain good interface properties with the smallest frequency dispersion in the accumulation region, and the best hysteresis characteristics and good I-V properties were presented. Also the samples with (NH4)2Sx treatment showed the smallest frequency dispersion near the flat-band region and a minimum Dit value of 2.6 × 1011 cm-2 eV-1.

Key words: N2 plasma(NH4)2Sx treatmentinterface propertiesMOS capacitors

Abstract: The impact of nitridation and sulfur passivation for In0.53Ga0.47As surfaces on the Al/Al2O3/InGaAs MOS capacitors properties was investigated by comparing the characteristics of frequency dispersion and hysteresis, calculating the Dit and Δ Nbt values, and analyzing the interface traps and the leakage current. The results showed that both of the methods could form a passivation-layer on the InGaAs surface. The samples treated by N2 plasma could obtain good interface properties with the smallest frequency dispersion in the accumulation region, and the best hysteresis characteristics and good I-V properties were presented. Also the samples with (NH4)2Sx treatment showed the smallest frequency dispersion near the flat-band region and a minimum Dit value of 2.6 × 1011 cm-2 eV-1.

Key words: N2 plasma(NH4)2Sx treatmentinterface propertiesMOS capacitors



References:

[1]

Takagi S, Iisawa T, Tezuka T. Carrier-transport-enhanced channel CMOS for improved power consumption and performance[J]. IEEE Trans Electron Devices, 2008, 55(1): 21.

[2]

Shahrjerdi D, Rotter T, Balakrishnan G. Fabrication of self-aligned enhancement-mode MOSFETs with gate stack[J]. IEEE Electron Device Lett, 2008, 29(6): 557.

[3]

Lin J Q, Lee S J, Oh H J. Inversion-mode self-aligned In0[J]. IEEE Electron Device Lett,, 2008, 29(9): 977.

[4]

Sonnet A M, Hinkle C L, Jivani M N. Performance enhancement of n-channel inversion type InxGa1-xAs metal-oxide-semiconductor field effect transistor using ex situ deposited thin amorphous silicon layer[J]. Appl Phys Lett, 2008, 93(12): 122109.

[5]

Xuan Y, Lin H C, Ye P D. Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric[J]. Appl Phys Lett, 2006, 88(26): 263518.

[6]

Edmonds M, Kent T J, Chang M. Passivation of surface defects on InGaAs (001) and (110) surfaces in preparation for subsequent gate oxide ALD[J]. IEEE International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2015: 1.

[7]

Yokoyama M, Taoka N, Suzuki R. Sulfur cleaning for (100), (111)A, and (111)B InGaAs surfaces with In content of 0[J]. IEEE International Conference on Indium Phosphide and Related Materials (IPRM), 2012: 167.

[8]

Hoshii T, Lee S, Suzuki R. Reduction in interface state density of Al2O3/InGaAs metal-oxide-semiconductor interfaces by InGaAs surface nitridation[J]. J Appl Phys, 2012, 112(7): 073702.

[9]

Wang L S, Xu J P, Liu L. Plasma-nitrided Ga2O3 (Gd2O3) as interfacial passivation layer for InGaAs metal-oxide-semiconductor capacitor with HfTiON gate dielectric[J]. IEEE Trans Electron Devices, 2015, 62(4): 1235.

[10]

Zhu Shuyan, Xu Jingping, Wang Lisheng. Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric[J]. Journal of Semiconductors, 2015, 36(3): 034006.

[11]

Haimoto T, Hoshii T, Nakagawa S. Fabrication and characterization of metal-insulator-semiconductor structures by direct nitridation of InP surfaces[J]. Appl Phys Lett, 2010, 96(1): 012107.

[12]

Zhuang Chunquan, Tang Yingwen, Huang Yangcheng. Electric characterization of ZnS/InP interface after (NH4)2S sulfidation treatment[J]. Chinese Journal of Semiconductors, 2005, 26(10): 1945.

[13]

Funamizu K, Lin Y C, Kakushima K. Electrical characteristics of HfO2 and La2O3 gate dielectrics for In0[J]. ECS Trans, 2009, 25(6): 265.

[14]

Nicollian E H, Goetzberger A. The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique[J]. Bell System Technical Journal, 1967, 46(6): 1055.

[15]

Engel-Herbert R, Hwang Y, Stemmer S. Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces[J]. J Appl Phys, 2010, 108(12): 124101.

[16]

Fleetwood D M, Saks N S. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides[J]. J Appl Phys, 1996, 79(3): 1583.

[17]

Mahata C, Byun Y C, An C H. Comparative study of atomic layer deposited stacked (HfO2/Al2O3) and nanolaminated (HfAlOx) dielectrics on In0[J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4195.

[18]

Evangelou E K, Rahman M S, Dimoulas A. Correlation of charge buildup and stress-induced leakage current in cerium oxide films grown on Ge (100) substrates[J]. IEEE Trans Electron Devices, 2009, 56(3): 399.

[19]

Chen I C, Teng C W, Coleman D J. Interface trap-enhanced gate-induced leakage current in MOSFET[J]. IEEE Electron Device Lett, 1989, 10(5): 216.

[1]

Takagi S, Iisawa T, Tezuka T. Carrier-transport-enhanced channel CMOS for improved power consumption and performance[J]. IEEE Trans Electron Devices, 2008, 55(1): 21.

[2]

Shahrjerdi D, Rotter T, Balakrishnan G. Fabrication of self-aligned enhancement-mode MOSFETs with gate stack[J]. IEEE Electron Device Lett, 2008, 29(6): 557.

[3]

Lin J Q, Lee S J, Oh H J. Inversion-mode self-aligned In0[J]. IEEE Electron Device Lett,, 2008, 29(9): 977.

[4]

Sonnet A M, Hinkle C L, Jivani M N. Performance enhancement of n-channel inversion type InxGa1-xAs metal-oxide-semiconductor field effect transistor using ex situ deposited thin amorphous silicon layer[J]. Appl Phys Lett, 2008, 93(12): 122109.

[5]

Xuan Y, Lin H C, Ye P D. Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric[J]. Appl Phys Lett, 2006, 88(26): 263518.

[6]

Edmonds M, Kent T J, Chang M. Passivation of surface defects on InGaAs (001) and (110) surfaces in preparation for subsequent gate oxide ALD[J]. IEEE International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2015: 1.

[7]

Yokoyama M, Taoka N, Suzuki R. Sulfur cleaning for (100), (111)A, and (111)B InGaAs surfaces with In content of 0[J]. IEEE International Conference on Indium Phosphide and Related Materials (IPRM), 2012: 167.

[8]

Hoshii T, Lee S, Suzuki R. Reduction in interface state density of Al2O3/InGaAs metal-oxide-semiconductor interfaces by InGaAs surface nitridation[J]. J Appl Phys, 2012, 112(7): 073702.

[9]

Wang L S, Xu J P, Liu L. Plasma-nitrided Ga2O3 (Gd2O3) as interfacial passivation layer for InGaAs metal-oxide-semiconductor capacitor with HfTiON gate dielectric[J]. IEEE Trans Electron Devices, 2015, 62(4): 1235.

[10]

Zhu Shuyan, Xu Jingping, Wang Lisheng. Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric[J]. Journal of Semiconductors, 2015, 36(3): 034006.

[11]

Haimoto T, Hoshii T, Nakagawa S. Fabrication and characterization of metal-insulator-semiconductor structures by direct nitridation of InP surfaces[J]. Appl Phys Lett, 2010, 96(1): 012107.

[12]

Zhuang Chunquan, Tang Yingwen, Huang Yangcheng. Electric characterization of ZnS/InP interface after (NH4)2S sulfidation treatment[J]. Chinese Journal of Semiconductors, 2005, 26(10): 1945.

[13]

Funamizu K, Lin Y C, Kakushima K. Electrical characteristics of HfO2 and La2O3 gate dielectrics for In0[J]. ECS Trans, 2009, 25(6): 265.

[14]

Nicollian E H, Goetzberger A. The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique[J]. Bell System Technical Journal, 1967, 46(6): 1055.

[15]

Engel-Herbert R, Hwang Y, Stemmer S. Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces[J]. J Appl Phys, 2010, 108(12): 124101.

[16]

Fleetwood D M, Saks N S. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides[J]. J Appl Phys, 1996, 79(3): 1583.

[17]

Mahata C, Byun Y C, An C H. Comparative study of atomic layer deposited stacked (HfO2/Al2O3) and nanolaminated (HfAlOx) dielectrics on In0[J]. ACS Applied Materials & Interfaces, 2013, 5(10): 4195.

[18]

Evangelou E K, Rahman M S, Dimoulas A. Correlation of charge buildup and stress-induced leakage current in cerium oxide films grown on Ge (100) substrates[J]. IEEE Trans Electron Devices, 2009, 56(3): 399.

[19]

Chen I C, Teng C W, Coleman D J. Interface trap-enhanced gate-induced leakage current in MOSFET[J]. IEEE Electron Device Lett, 1989, 10(5): 216.

[1]

Huoxi Xu, Jingping Xu. Electrical properties of Ge metal-oxide-semiconductor capacitors with high-k La2O3 gate dielectric incorporated by N or/and Ti. J. Semicond., 2016, 37(6): 064006. doi: 10.1088/1674-4926/37/6/064006

[2]

Wu Chunbo, Zhou Yuqin, Li Guorong, Liu Fengzhen. Influence of the initial transient state of plasma and hydrogen pre-treatment on the interface properties of a silicon heterojunction fabricated by PECVD. J. Semicond., 2011, 32(9): 096001. doi: 10.1088/1674-4926/32/9/096001

[3]

Wenyu Yuan, Jingping Xu, Lu Liu, Yong Huang, Zhixiang Cheng. Improved interfacial and electrical properties of Ge MOS devices with ZrON/GeON dual passivation layer. J. Semicond., 2016, 37(5): 054004. doi: 10.1088/1674-4926/37/5/054004

[4]

Qiaozhi Zhu, Dejun Wang. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors. J. Semicond., 2014, 35(2): 024002. doi: 10.1088/1674-4926/35/2/024002

[5]

Dongyan Tao, Yu Cheng, Jingming Liu, Jie Su, Tong Liu, Fengyun Yang, Fenghua Wang, Kewei Cao, Zhiyuan Dong, Youwen Zhao. Chemical and electrical properties of (NH4)2S passivated GaSb surface. J. Semicond., 2015, 36(7): 073006. doi: 10.1088/1674-4926/36/7/073006

[6]

Zheng You-dou, Wu Feng-mei, Su Zong-he. An investigation on the annealing properties of SiO_2-Si interface in RF plasma. J. Semicond., 1980, 1(2): 163.

[7]

Hu Aibin, Wang Wenwu, Xu Qiuxia. (NH4)2S treatment of the Si (100) surface and its effects on Al/Si Schottky barrier heights. J. Semicond., 2009, 30(8): 084001. doi: 10.1088/1674-4926/30/8/084001

[8]

Shuyan Zhu, Jingping Xu, Lisheng Wang, Yuan Huang, Wing Man Tang. Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric. J. Semicond., 2015, 36(3): 034006. doi: 10.1088/1674-4926/36/3/034006

[9]

Xiaoyu Liu, Jingping Xu, Lu Liu, Zhixiang Cheng, Yong Huang, Jingkang Gong. Investigation on interfacial and electrical properties of Ge MOS capacitor with different NH3-plasma treatment procedure. J. Semicond., 2017, 38(8): 084004. doi: 10.1088/1674-4926/38/8/084004

[10]

Yuqiong Chu, Zongliang Huo, Yulong Han, Guoxing Chen, Dong Zhang, Xinkai Li, Ming Liu. Investigation of charge loss characteristics of HfO2 annealed in N2 or O2 ambient. J. Semicond., 2014, 35(8): 083004. doi: 10.1088/1674-4926/35/8/083004

[11]

Yanyue Li, Xiaochuan Deng, Yunfeng Liu, Yanli Zhao, Chengzhan Li, Xixi Chen, Bo Zhang. Effect of post oxidation annealing in nitric oxide on interface properties of 4H-SiC/SiO2 after high temperature oxidation. J. Semicond., 2015, 36(9): 094003. doi: 10.1088/1674-4926/36/9/094003

[12]

Haitao Li, Jun Qian, Fangfang Han, Tinghui Li. Density functional theory studies of the optical properties of a β-FeSi2 (100)/Si (001) interface at high pressure. J. Semicond., 2013, 34(7): 072003. doi: 10.1088/1674-4926/34/7/072003

[13]

Wang Wenyan, Qin Fuwen, Wu Aimin, Song Shiwei, Liu Ruixian, Jiang Xin, Xu Yin, Gu Biao. Influences of N2 Flow Rate on the Crystalline Characteristics of GaN Films Deposited on Glass Substrate at Low Temperature. J. Semicond., 2008, 29(12): 2376.

[14]

Shang Haiping, Xu Qiuxia. Two-step Ni silicide process and influence of protective N2 gas. J. Semicond., 2009, 30(9): 096002. doi: 10.1088/1674-4926/30/9/096002

[15]

Jingkang Gong, Jingping Xu, Lu Liu, Hanhan Lu, Xiaoyu Liu, Yaoyao Feng. Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer. J. Semicond., 2017, 38(9): 094004. doi: 10.1088/1674-4926/38/9/094004

[16]

Chen Lele, Zhu Liang, Xu Linda, Li Dongxia, Cai Hui, Pao Tod. Role of CF2 in the etching of SiO2, Si3N4 and Si in fluorocarbon plasma. J. Semicond., 2009, 30(3): 033005. doi: 10.1088/1674-4926/30/3/033005

[17]

Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001

[18]

Kai Han, Xueli Ma, Jinjuan Xiang, Hong Yang, Wenwu Wang. Effect of low temperature annealing on the electrical properties of an MOS capacitor with a HfO2 dielectric and a TiN metal gate. J. Semicond., 2013, 34(11): 114007. doi: 10.1088/1674-4926/34/11/114007

[19]

Chunlei Zheng, Hongbin Pu, Hong Li, Zhiming Chen. Photoelectric properties of p-β-FeSi2/n-4H-SiC heterojunction near-infrared photodiode. J. Semicond., 2015, 36(5): 054009. doi: 10.1088/1674-4926/36/5/054009

[20]

Teng Xiaoming, Liang Chao, He Jinhua. Effect of strontium nitride on the properties of Sr2Si5N8:Eu2+ red phosphor. J. Semicond., 2011, 32(1): 012003. doi: 10.1088/1674-4926/32/1/012003

Search

Advanced Search >>

GET CITATION

Z Z Lin, M M Cao, S K Wang, Q Li, G L Xiao, X Gao, H G Liu, H O Li. The effect of nitridation and sulfur passivation for In0.53Ga0.47As surfaces on their Al/Al2O3/InGaAs MOS capacitors properties[J]. J. Semicond., 2016, 37(2): 026002. doi: 10.1088/1674-4926/37/2/026002.

Export: BibTex EndNote

Article Metrics

Article views: 676 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 19 June 2015 Manuscript revised: Online: Published: 01 February 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误