J. Semicond. > Volume 37 > Issue 4 > Article Number: 044010

Temperature-variable high-frequency dynamic modeling of PIN diode

Shangbin Ye , , Jiajia Zhang , Yicheng Zhang and Yongtao Yao

+ Author Affilications + Find other works by these authors

PDF

Abstract: The PIN diode model for high frequency dynamic transient characteristic simulation is important in conducted EMI analysis. The model should take junction temperature into consideration since equipment usually works at a wide range of temperature. In this paper, a temperature-variable high frequency dynamic model for the PIN diode is built, which is based on the Laplace-transform analytical model at constant temperature. The relationship between model parameters and temperature is expressed as temperature functions by analyzing the physical principle of these parameters. A fast recovery power diode MUR1560 is chosen as the test sample and its dynamic performance is tested under inductive load by a temperature chamber experiment, which is used for model parameter extraction and model verification. Results show that the model proposed in this paper is accurate for reverse recovery simulation with relatively small errors at the temperature range from 25 to 120℃.

Key words: PIN diodeLaplace transformtemperature variable modelparameter extraction

Abstract: The PIN diode model for high frequency dynamic transient characteristic simulation is important in conducted EMI analysis. The model should take junction temperature into consideration since equipment usually works at a wide range of temperature. In this paper, a temperature-variable high frequency dynamic model for the PIN diode is built, which is based on the Laplace-transform analytical model at constant temperature. The relationship between model parameters and temperature is expressed as temperature functions by analyzing the physical principle of these parameters. A fast recovery power diode MUR1560 is chosen as the test sample and its dynamic performance is tested under inductive load by a temperature chamber experiment, which is used for model parameter extraction and model verification. Results show that the model proposed in this paper is accurate for reverse recovery simulation with relatively small errors at the temperature range from 25 to 120℃.

Key words: PIN diodeLaplace transformtemperature variable modelparameter extraction



References:

[1]

Fang C, Li W, Li X. PIN power diode dynamic behavior and physics-based model parameter extraction method[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 208.

[2]

Zhou Y. The research of the snape-off reserve recover current of diode[J]. Shenyang:Shenyang University of Technology, 2013.

[3]

Wang J. PSPICE circuit design and application[J]. , 2010.

[4]

Bellone S, Della F, Benedetto D. An analytical model of the switching behavior of 4H-SiC PIN diodes from arbitrary injection conditions[J]. IEEE Trans Power Electron, 2012, 27(3): 1641.

[5]

Zhang Y, Zhang J, Wei L. Research progress of power PIN diode model for electromagnetic interference pre-evaluation[J]. Journal of Tongji University (Natural Science), 2015, 43(4): 617.

[6]

Cliff M, Lauritzen P, Sigg A. Modeling of power diodes with the lumped charge modeling technique[J]. IEEE Trans Power Electron, 1997, 12(3): 398.

[7]

Strollo A. A new SPICE model of power PIN diode based on asymptotic waveform evaluation[J]. IEEE Trans Power Electron, 1997, 12(1): 12.

[8]

Bryant T, Lu L, Santi E. Physical modeling of fast pin diodes with carrier lifetime zoning, Part 1:device model[J]. IEEE Trans Power Electron, 2008, 23(1): 189.

[9]

Igic M, Mawby A, Towers S. New physically based pin diode compact model for circuit modeling applications[J]. IEE Proceedings of Circuits Devices and Systems, 2002, 149(4): 257.

[10]

Buiatti G, Cappelluti F, Ghione G. Physics-based PiN diode SPICE model for power circuit simulation[J]. IEEE Trans Industry Application, 2007, 43(4): 911.

[11]

Niu G, Chen S, Yu J. Research on effect of temperature change on characteristics of SPICE diode based on MATLAB[J]. Modern Electronics Technique, 2012, 35(2): 131.

[12]

Qi Y, Li Y, Hao Y. Study of thermal characteristics of PIN diodes[J]. Journal of Microwaves, 2014(6): 220.

[13]

Chen J, Chen X, Liu C. Analysis of temperature effect on p-i-n diode circuits by a multiphysics and circuit cosimulation algorithm[J]. IEEE Trans Electron Devices, 2012, 59(11): 3069.

[14]

Utermohlen F, Hermann I, Etter D B. Temperature sensitivity modeling of pn-junction diodes for micro bolometer based thermal imaging application[J]. International Semiconductor Conference, 2013: 1.

[15]

Sintamarean C, Blaabjerg F, Wang H. A novel electro-thermal model for wide bandgap semiconductor based devices[J]. European Conference on Power Electronics and Applications, 2013: 1.

[16]

Cui G, Wang J, Huang Q. Measurement for minority lifetime in PIN diodes[J]. Chinese Journal of Electron Devices, 2004, 27(2): 236.

[17]

Simon S, Kwok N. Physics of semiconductor devices[J]. , 2006.

[18]

Donald N. Semiconductor physics and devices[J]. , 2011.

[19]

Chen Z, Wang J. Semiconductor devices material physics basic[J]. Beijing:Science Press, 2003.

[20]

Jayant B. Fundamentals of power semiconductor devices[J]. New York:Springer-Verlag Inc, 2008.

[1]

Fang C, Li W, Li X. PIN power diode dynamic behavior and physics-based model parameter extraction method[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 208.

[2]

Zhou Y. The research of the snape-off reserve recover current of diode[J]. Shenyang:Shenyang University of Technology, 2013.

[3]

Wang J. PSPICE circuit design and application[J]. , 2010.

[4]

Bellone S, Della F, Benedetto D. An analytical model of the switching behavior of 4H-SiC PIN diodes from arbitrary injection conditions[J]. IEEE Trans Power Electron, 2012, 27(3): 1641.

[5]

Zhang Y, Zhang J, Wei L. Research progress of power PIN diode model for electromagnetic interference pre-evaluation[J]. Journal of Tongji University (Natural Science), 2015, 43(4): 617.

[6]

Cliff M, Lauritzen P, Sigg A. Modeling of power diodes with the lumped charge modeling technique[J]. IEEE Trans Power Electron, 1997, 12(3): 398.

[7]

Strollo A. A new SPICE model of power PIN diode based on asymptotic waveform evaluation[J]. IEEE Trans Power Electron, 1997, 12(1): 12.

[8]

Bryant T, Lu L, Santi E. Physical modeling of fast pin diodes with carrier lifetime zoning, Part 1:device model[J]. IEEE Trans Power Electron, 2008, 23(1): 189.

[9]

Igic M, Mawby A, Towers S. New physically based pin diode compact model for circuit modeling applications[J]. IEE Proceedings of Circuits Devices and Systems, 2002, 149(4): 257.

[10]

Buiatti G, Cappelluti F, Ghione G. Physics-based PiN diode SPICE model for power circuit simulation[J]. IEEE Trans Industry Application, 2007, 43(4): 911.

[11]

Niu G, Chen S, Yu J. Research on effect of temperature change on characteristics of SPICE diode based on MATLAB[J]. Modern Electronics Technique, 2012, 35(2): 131.

[12]

Qi Y, Li Y, Hao Y. Study of thermal characteristics of PIN diodes[J]. Journal of Microwaves, 2014(6): 220.

[13]

Chen J, Chen X, Liu C. Analysis of temperature effect on p-i-n diode circuits by a multiphysics and circuit cosimulation algorithm[J]. IEEE Trans Electron Devices, 2012, 59(11): 3069.

[14]

Utermohlen F, Hermann I, Etter D B. Temperature sensitivity modeling of pn-junction diodes for micro bolometer based thermal imaging application[J]. International Semiconductor Conference, 2013: 1.

[15]

Sintamarean C, Blaabjerg F, Wang H. A novel electro-thermal model for wide bandgap semiconductor based devices[J]. European Conference on Power Electronics and Applications, 2013: 1.

[16]

Cui G, Wang J, Huang Q. Measurement for minority lifetime in PIN diodes[J]. Chinese Journal of Electron Devices, 2004, 27(2): 236.

[17]

Simon S, Kwok N. Physics of semiconductor devices[J]. , 2006.

[18]

Donald N. Semiconductor physics and devices[J]. , 2011.

[19]

Chen Z, Wang J. Semiconductor devices material physics basic[J]. Beijing:Science Press, 2003.

[20]

Jayant B. Fundamentals of power semiconductor devices[J]. New York:Springer-Verlag Inc, 2008.

[1]

Le Yu, Yingkui Zheng, Sheng Zhang, Lei Pang, Ke Wei, Xiaohua Ma. Small-signal model parameter extraction for AlGaN/GaN HEMT. J. Semicond., 2016, 37(3): 034003. doi: 10.1088/1674-4926/37/3/034003

[2]

Li Ruizhen, Li Duoli, Du Huan, Hai Chaohe, Han Zhengsheng. SOI MOSFET Model Parameter Extraction via a Compound Genetic Algorithm. J. Semicond., 2006, 27(5): 796.

[3]

A. Avila Garcia, L. Ortega Reyes. Analysis and parameter extraction of memristive structures based on Strukov’s non-linear model. J. Semicond., 2018, 39(12): 124009. doi: 10.1088/1674-4926/39/12/124009

[4]

Ren Zheng, Hu Shaojian, Jiang Bin, Wang Yong, Zhao Yuhang. Extraction of Temperature Parameters and Optimization of the Mextram 504 Model on SiGe HBT. J. Semicond., 2008, 29(5): 960.

[5]

Wu Rufei, Zhang Haiying, Yin Junjian, Li Xiao, Liu Huidong, Liu Xunchun. A Novel Equivalent Circuit Model of GaAs PIN Diodes. J. Semicond., 2008, 29(4): 672.

[6]

Xingrong Ren, Changchun Chai, Zhenyang Ma, Yintang Yang, Liping Qiao, Chunlei Shi, Lihua Ren. Motion of current filaments in avalanching PIN diodes. J. Semicond., 2013, 34(4): 044004. doi: 10.1088/1674-4926/34/4/044004

[7]

Zhu Zhangming, Qian Libo, Yang Yintang. A Novel Interconnect Crosstalk Parallel RLC Analyzable Model Based on the 65nm CMOS Process. J. Semicond., 2008, 29(3): 423.

[8]

Lu Jing, Wang Yan, Ma Long, Yu Zhiping. A New Small-Signal Modeling and Extraction Method in AlGaN/GaN HEMTs. J. Semicond., 2007, 28(4): 567.

[9]

Xu Jingbo, Yin Junjian, Zhang Haiying, Li Xiao, Liu Liang, Ye Tianchun. Abstraction of Small Signal Equivalent Circuit Parameters of Enhancement-Mode InGaP/AlGaAs/InGaAs PHEMT. J. Semicond., 2007, 28(3): 361.

[10]

Sudhansu Kumar Pati, Kalyan Koley, Arka Dutta, N Mohankumar, Chandan Kumar Sarkar. A new approach to extracting the RF parameters of asymmetric DG MOSFETs with the NQS effect. J. Semicond., 2013, 34(11): 114002. doi: 10.1088/1674-4926/34/11/114002

[11]

Chi Yusong, Huang Fengyi, Wu Zhongjie, Zhang Shaoyong, Kong Xiaoming, Wang Zhigong. Characterization and Modeling for 0.13μm RF MOSFETs. J. Semicond., 2006, 27(2): 373.

[12]

Ren Zheng, Shi Yanling, , Hu Shaojian, Jin Meng, Zhu Jun, Chen Shoumian. Optimization of BSIM3 I-V Modeling of High Voltage MOS Devices. J. Semicond., 2006, 27(6): 1073.

[13]

Zhang Chenfei, Ma Chenyue, Guo Xinjie, Zhang Xiufang, He Jin, Wang Guozeng, Yang Zhang, Liu Zhiwei. Forward gated-diode method for parameter extraction of MOSFETs. J. Semicond., 2011, 32(2): 024001. doi: 10.1088/1674-4926/32/2/024001

[14]

Ma Chenyue, Zhang Chenfei, Wang Hao, He Jin, Lin Xinnan, Mansun Chan. Diode parameter extraction by a linear cofactor difference operation method. J. Semicond., 2010, 31(11): 114009. doi: 10.1088/1674-4926/31/11/114009

[15]

Lu Lei, Zhou Feng, Tang Zhangwen, Min Hao, Wang Junyu. Equivalent Model and Parameter Extraction of Center-Tapped Differential Inductors. J. Semicond., 2006, 27(12): 2150.

[16]

Liu Jun, Sun Lingling. Parameter Extraction of a III-V Compound HBT Model. J. Semicond., 2006, 27(5): 874.

[17]

Fu Jun. Small-signal model parameter extraction for microwave SiGe HBTs based on Y- and Z-parameter characterization. J. Semicond., 2009, 30(8): 084005. doi: 10.1088/1674-4926/30/8/084005

[18]

Liu Linsheng. Improved Nonlinear Model of HEMTs with Independent Transconductance Tail-Off Fitting. J. Semicond., 2011, 32(2): 024004. doi: 10.1088/1674-4926/32/2/024004

[19]

Zhao Yuhang, Hu Shaojian, Ren Zheng. Accurate Parameter Extraction of Substrate Resistance in an RF CMOS Model Valid up to 20GHz. J. Semicond., 2008, 29(4): 737.

[20]

D. K. Panda, G. Amarnath, T. R. Lenka. Small-signal model parameter extraction of E-mode N-polar GaN MOS-HEMT using optimization algorithms and its comparison. J. Semicond., 2018, 39(7): 074001. doi: 10.1088/1674-4926/39/7/074001

Search

Advanced Search >>

GET CITATION

S B Ye, J J Zhang, Y C Zhang, Y T Yao. Temperature-variable high-frequency dynamic modeling of PIN diode[J]. J. Semicond., 2016, 37(4): 044010. doi: 10.1088/1674-4926/37/4/044010.

Export: BibTex EndNote

Article Metrics

Article views: 343 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 28 July 2015 Manuscript revised: Online: Published: 01 April 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误