J. Semicond. > Volume 37 > Issue 5 > Article Number: 054004

Improved interfacial and electrical properties of Ge MOS devices with ZrON/GeON dual passivation layer

Wenyu Yuan , Jingping Xu , , Lu Liu , Yong Huang and Zhixiang Cheng

+ Author Affilications + Find other works by these authors

PDF

Abstract: The interfacial and electrical characteristics of Ge metal-oxide-semiconductor (MOS) devices with a dual passivation layer of ZrON/GeON formed by NH3- or N2-plasma treatment are investigated. The experimental results show that the NH3-plasma treated sample exhibits significantly improved interfacial and electrical properties as compared to the samples with N2-plasma treatment and no treatment: a lower interface-state density at the midgap (1.64 × 1011 cm-2·eV-1) and gate leakage current (9.32 × 10-5 A/cm2 at Vfb+ 1 V), a small capacitance equivalent thickness (1.11 nm) and a high k value (32). X-ray photoelectron spectroscopy is used to analyze the involved mechanisms. It is indicated that more GeON and less GeOx (x <2) are formed on the Ge surface during NH3-plasma treatment than the N2-plasma treatment, resulting in a high-quality high-k/Ge interface, because H atoms and NH radicals in NH3-plasma can enhance volatilization of the unstable low-k GeOx, creating high-quality GeON passivation layer. Moreover, more nitrogen incorporation in ZrON/GeON induced by NH3-plasma treatment can build a stronger N barrier and thus more effectively inhibit in-diffusion of O and Ti from high-k gate dielectric and out-diffusion of Ge.

Key words: Ge MOSNH3 plasmainterface propertiesZrON/GeON dual passivation layer

Abstract: The interfacial and electrical characteristics of Ge metal-oxide-semiconductor (MOS) devices with a dual passivation layer of ZrON/GeON formed by NH3- or N2-plasma treatment are investigated. The experimental results show that the NH3-plasma treated sample exhibits significantly improved interfacial and electrical properties as compared to the samples with N2-plasma treatment and no treatment: a lower interface-state density at the midgap (1.64 × 1011 cm-2·eV-1) and gate leakage current (9.32 × 10-5 A/cm2 at Vfb+ 1 V), a small capacitance equivalent thickness (1.11 nm) and a high k value (32). X-ray photoelectron spectroscopy is used to analyze the involved mechanisms. It is indicated that more GeON and less GeOx (x <2) are formed on the Ge surface during NH3-plasma treatment than the N2-plasma treatment, resulting in a high-quality high-k/Ge interface, because H atoms and NH radicals in NH3-plasma can enhance volatilization of the unstable low-k GeOx, creating high-quality GeON passivation layer. Moreover, more nitrogen incorporation in ZrON/GeON induced by NH3-plasma treatment can build a stronger N barrier and thus more effectively inhibit in-diffusion of O and Ti from high-k gate dielectric and out-diffusion of Ge.

Key words: Ge MOSNH3 plasmainterface propertiesZrON/GeON dual passivation layer



References:

[1]

Chui C O, Ramanathan S, Triplett B B. Germanium MOS capacitors incorporation ultrathin high-k gate dielectric[J]. IEEE Electron Device Lett, 2002, 23(8): 473.

[2]

Xie R, Phung T H, He W. High mobility high-k/Ge pMOSFETs with 1 nm EOT new concept on interface engineering and interface characterization[J]. IEEE International Electron Devices Meeting (IEDM), 2008: 1.

[3]

Xu J P, Lai P T, Li C X. Improved electrical properties of germanium MOS capacitors with gate dielectric grown in wet-NO ambient[J]. IEEE Electron Device Lett, 2006, 27(6): 439.

[4]

Xie R, Zhu C. Effects of sulfur passivation on germanium MOS capacitors with HfON gate dielectric[J]. IEEE Electron Device Lett, 2007, 28(11): 976.

[5]

Lin C C, Wu Y H, Wu C Y. Surface passivation of Ge MOS devices by SmGeOx with sub-nm EOT[J]. IEEE Electron Device Lett, 2014, 35(3): 384.

[6]

Huang C S, Liu P T. Effect of high-pressure H2O treatment on elimination of interfacial GeOx layer between ZrO2 and Ge stack[J]. Appl Phys Lett, 2011, 99(8): 082907.

[7]

Minoura Y, Kasuya A, Hosoi T. Design and control of Ge-based metal-oxide-semiconductor interfaces for high-mobility field-effect transistors with ultrathin oxynitride gate dielectrices[J]. Appl Phys Lett, 2013, 103(3): 033502.

[8]

Ji F, Xu J P, Lai P T. Improved interfacial properties of Ge MOS capacitor with high-k dielectric by using TaON/GeON dual interlayer[J]. IEEE Electron Device Lett, 2011, 32(2): 122.

[9]

Zhao M, Liang R, Wang J. Improved electrical properties of Ge metal-oxide-semiconductor devices with HfO2 gate dielectrics using an ultrathin GeSnOx film as the surface passivation layer[J]. Appl Phys Lett, 2013, 102(14): 142906.

[10]

Li C C, Shu K, Liao C. Improved electrical characteristics of Ge MOS devices with high oxidation state in HfGeOx interfacial layer formed by in situ desorption[J]. IEEE Electron Device Lett, 2014, 35(5): 509.

[11]

Jeon S, Choi C J, Seng T Y. Electrical characteristics of ZrOxNy prepared by NH3 annealing of ZrO2[J]. Appl Phys Lett, 2001, 79(2): 245.

[12]

Jung H S, Park J M, Kim H K. The bias temperature instability characteristics of in situ nitrogen incorporated ZrOxNy gate dielectrics[J]. Electrochem Solid-State Lett, 2010, 13(9).

[13]

Swaminathan S, Shandalov M, Oshima Y. Bilayer metal oxide gate insulators for scaled Ge-channel metal-oxide-semiconductor devices[J]. Appl Phys Lett, 2010, 96(8): 2082904.

[14]

Bakardjieva V S, Alexieva Z I, Beshkov G D. Plasma nitridation of silicon by N2 and NH3 in PECVD reactor[J]. J Phys: Conference Series, 2010, 223(1): 012010.

[15]

Yano H, Katafuchi F, Kimoto T. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET's[J]. IEEE Trans Electron Devices, 1999, 46(3): 504.

[16]

Chui C O, Ito F, Saraswat K C. Scalability and electrical properties of germanium oxynitride MOS dielecrtics[J]. IEEE Electron Device Lett, 2004, 25(9): 613.

[17]

Yang Y G, Tsui B Y. Thin effective oxide thickness (~ 0[J]. International Symposium on VLSI Technology, Systems and Application, 2015: 1.

[18]

Wong Y H, Cheong K Y. Formation of Zr-oxynitride thin films on 4H-SiC substrate[J]. Thin Solid Films, 2012, 520(22): 6822.

[19]

Bera M K, Mahata C, Chakraborty A K. TiO2/GeOxNy stacked gate dielectrics for Ge-MOSFETs[J]. Semicond Sci Technol, 2007, 22(12): 1352.

[20]

Wu N, Zhang Q, Zhu C. Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate[J]. Appl Phys Lett, 2004, 84(19): 3741.

[21]

Prabhakaran K, Ogina T. Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study[J]. Surf Sci, 1995, 325(3): 263.

[1]

Chui C O, Ramanathan S, Triplett B B. Germanium MOS capacitors incorporation ultrathin high-k gate dielectric[J]. IEEE Electron Device Lett, 2002, 23(8): 473.

[2]

Xie R, Phung T H, He W. High mobility high-k/Ge pMOSFETs with 1 nm EOT new concept on interface engineering and interface characterization[J]. IEEE International Electron Devices Meeting (IEDM), 2008: 1.

[3]

Xu J P, Lai P T, Li C X. Improved electrical properties of germanium MOS capacitors with gate dielectric grown in wet-NO ambient[J]. IEEE Electron Device Lett, 2006, 27(6): 439.

[4]

Xie R, Zhu C. Effects of sulfur passivation on germanium MOS capacitors with HfON gate dielectric[J]. IEEE Electron Device Lett, 2007, 28(11): 976.

[5]

Lin C C, Wu Y H, Wu C Y. Surface passivation of Ge MOS devices by SmGeOx with sub-nm EOT[J]. IEEE Electron Device Lett, 2014, 35(3): 384.

[6]

Huang C S, Liu P T. Effect of high-pressure H2O treatment on elimination of interfacial GeOx layer between ZrO2 and Ge stack[J]. Appl Phys Lett, 2011, 99(8): 082907.

[7]

Minoura Y, Kasuya A, Hosoi T. Design and control of Ge-based metal-oxide-semiconductor interfaces for high-mobility field-effect transistors with ultrathin oxynitride gate dielectrices[J]. Appl Phys Lett, 2013, 103(3): 033502.

[8]

Ji F, Xu J P, Lai P T. Improved interfacial properties of Ge MOS capacitor with high-k dielectric by using TaON/GeON dual interlayer[J]. IEEE Electron Device Lett, 2011, 32(2): 122.

[9]

Zhao M, Liang R, Wang J. Improved electrical properties of Ge metal-oxide-semiconductor devices with HfO2 gate dielectrics using an ultrathin GeSnOx film as the surface passivation layer[J]. Appl Phys Lett, 2013, 102(14): 142906.

[10]

Li C C, Shu K, Liao C. Improved electrical characteristics of Ge MOS devices with high oxidation state in HfGeOx interfacial layer formed by in situ desorption[J]. IEEE Electron Device Lett, 2014, 35(5): 509.

[11]

Jeon S, Choi C J, Seng T Y. Electrical characteristics of ZrOxNy prepared by NH3 annealing of ZrO2[J]. Appl Phys Lett, 2001, 79(2): 245.

[12]

Jung H S, Park J M, Kim H K. The bias temperature instability characteristics of in situ nitrogen incorporated ZrOxNy gate dielectrics[J]. Electrochem Solid-State Lett, 2010, 13(9).

[13]

Swaminathan S, Shandalov M, Oshima Y. Bilayer metal oxide gate insulators for scaled Ge-channel metal-oxide-semiconductor devices[J]. Appl Phys Lett, 2010, 96(8): 2082904.

[14]

Bakardjieva V S, Alexieva Z I, Beshkov G D. Plasma nitridation of silicon by N2 and NH3 in PECVD reactor[J]. J Phys: Conference Series, 2010, 223(1): 012010.

[15]

Yano H, Katafuchi F, Kimoto T. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET's[J]. IEEE Trans Electron Devices, 1999, 46(3): 504.

[16]

Chui C O, Ito F, Saraswat K C. Scalability and electrical properties of germanium oxynitride MOS dielecrtics[J]. IEEE Electron Device Lett, 2004, 25(9): 613.

[17]

Yang Y G, Tsui B Y. Thin effective oxide thickness (~ 0[J]. International Symposium on VLSI Technology, Systems and Application, 2015: 1.

[18]

Wong Y H, Cheong K Y. Formation of Zr-oxynitride thin films on 4H-SiC substrate[J]. Thin Solid Films, 2012, 520(22): 6822.

[19]

Bera M K, Mahata C, Chakraborty A K. TiO2/GeOxNy stacked gate dielectrics for Ge-MOSFETs[J]. Semicond Sci Technol, 2007, 22(12): 1352.

[20]

Wu N, Zhang Q, Zhu C. Effect of surface NH3 anneal on the physical and electrical properties of HfO2 films on Ge substrate[J]. Appl Phys Lett, 2004, 84(19): 3741.

[21]

Prabhakaran K, Ogina T. Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study[J]. Surf Sci, 1995, 325(3): 263.

[1]

Xiaoyu Liu, Jingping Xu, Lu Liu, Zhixiang Cheng, Yong Huang, Jingkang Gong. Investigation on interfacial and electrical properties of Ge MOS capacitor with different NH3-plasma treatment procedure. J. Semicond., 2017, 38(8): 084004. doi: 10.1088/1674-4926/38/8/084004

[2]

Zizeng Lin, Mingmin Cao, Shengkai Wang, Qi Li, Gongli Xiao, Xi Gao, Honggang Liu, Haiou Li. The effect of nitridation and sulfur passivation for In0.53Ga0.47As surfaces on their Al/Al2O3/InGaAs MOS capacitors properties. J. Semicond., 2016, 37(2): 026002. doi: 10.1088/1674-4926/37/2/026002

[3]

Hui Hao, Xiao Chen, Zhengcheng Li, Yang Shen, Hu Wang, Yanfei Zhao, Rong Huang, Tong Liu, Jian Liang, Yuxin An, Qing Peng, Sunan Ding. Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment. J. Semicond., 2019, 40(1): 012806. doi: 10.1088/1674-4926/40/1/012806

[4]

Huoxi Xu, Jingping Xu. Electrical properties of Ge metal-oxide-semiconductor capacitors with high-k La2O3 gate dielectric incorporated by N or/and Ti. J. Semicond., 2016, 37(6): 064006. doi: 10.1088/1674-4926/37/6/064006

[5]

Wu Chunbo, Zhou Yuqin, Li Guorong, Liu Fengzhen. Influence of the initial transient state of plasma and hydrogen pre-treatment on the interface properties of a silicon heterojunction fabricated by PECVD. J. Semicond., 2011, 32(9): 096001. doi: 10.1088/1674-4926/32/9/096001

[6]

Jingkang Gong, Jingping Xu, Lu Liu, Hanhan Lu, Xiaoyu Liu, Yaoyao Feng. Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer. J. Semicond., 2017, 38(9): 094004. doi: 10.1088/1674-4926/38/9/094004

[7]

Shuyan Zhu, Jingping Xu, Lisheng Wang, Yuan Huang, Wing Man Tang. Comparison of interfacial and electrical properties between Al2O3 and ZnO as interface passivation layer of GaAs MOS device with HfTiO gate dielectric. J. Semicond., 2015, 36(3): 034006. doi: 10.1088/1674-4926/36/3/034006

[8]

Zheng You-dou, Wu Feng-mei, Su Zong-he. An investigation on the annealing properties of SiO_2-Si interface in RF plasma. J. Semicond., 1980, 1(2): 163.

[9]

Mei Zhao, Renrong Liang, Jing Wang, Jun Xu. Effective interface passivation of a Ge/HfO2 gate stack using ozone pre-gate treatment and ozone ambient annealing. J. Semicond., 2013, 34(6): 066005. doi: 10.1088/1674-4926/34/6/066005

[10]

Liu Yanxiang, Tang Shaoqiu, Xia Guanqun, Cheng Zongquan, Zheng Yanlan. CH3CSNH2/NH4OH Passivation on GaInAsSb/GaSb PIN Infrared Photodetectors. J. Semicond., 2005, 26(S1): 132.

[11]

Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001

[12]

Ren Chunjiang, Chen Tangsheng, Jiao Gang, Chen Gang, Xue Fangshi, Chen Chen. Effects of NF3 Plasma Treatment Prior to SiN Passivation on the Characteristics of AlGaN/GaN HEMTs. J. Semicond., 2008, 29(12): 2385.

[13]

Qiaozhi Zhu, Dejun Wang. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors. J. Semicond., 2014, 35(2): 024002. doi: 10.1088/1674-4926/35/2/024002

[14]

Shaoming Lin, Shaoying Ke, Yujie Ye, Donglin Huang, Jinyong Wu, Songyan Chen, Cheng Li, Jianyuan Wang, Wei Huang. Electrical properties of Si/Si bonded wafers based on an amorphous Ge interlayer. J. Semicond., 2018, 39(11): 113001. doi: 10.1088/1674-4926/39/11/113001

[15]

M Errai, A El Kaaouachi, H El Idrissi. Electrical properties of Ge:Ga near the metal-insulator transition. J. Semicond., 2015, 36(6): 062001. doi: 10.1088/1674-4926/36/6/062001

[16]

Decheng Yang, Fang Lang, Zhuo Xu, Jinchao Shi, Gaofei Li, Zhiyan Hu, Jingfeng Xiong. Influence of atomic layer deposition Al2O3 nano-layer on the surface passivation of silicon solar cells. J. Semicond., 2014, 35(5): 052002. doi: 10.1088/1674-4926/35/5/052002

[17]

Yuxin Wang, Rongbin Hu, Ruzhang Li, Guangbing Chen, Dongbing Fu, Wu Lu. Total dose effects on the matching properties of deep submicron MOS transistors. J. Semicond., 2014, 35(6): 064007. doi: 10.1088/1674-4926/35/6/064007

[18]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[19]

Lijuan Wu, Wentong Zhang, Bo Zhang, Zhaoji Li. A high voltage SOI pLDMOS with a partial interface equipotential floating buried layer. J. Semicond., 2013, 34(7): 074009. doi: 10.1088/1674-4926/34/7/074009

[20]

Zhijie Wang. Unique interfacial thermodynamics of few-layer 2D MoS. J. Semicond., 2019, 40(6): 060202. doi: 10.1088/1674-4926/40/6/060202

Search

Advanced Search >>

GET CITATION

W Y Yuan, J P Xu, L Liu, Y Huang, Z X Cheng. Improved interfacial and electrical properties of Ge MOS devices with ZrON/GeON dual passivation layer[J]. J. Semicond., 2016, 37(5): 054004. doi: 10.1088/1674-4926/37/5/054004.

Export: BibTex EndNote

Article Metrics

Article views: 614 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 22 August 2015 Manuscript revised: Online: Published: 01 May 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误