J. Semicond. > Volume 37 > Issue 5 > Article Number: 055007

15158A SP6T RF switch based on IBM SOI CMOS technology

Zhiqun Cheng 1, , , Guoguo Yan 1, 2, , Wayne Ni 2, , Dandan Zhu 1, , Hannah Ni 2, , Jin Li 2, , Shuai Chen 1, and Guohua Liu 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: This paper presents the design of single-pole six-throw (SP6T) RF switch with IBM 0.18 μm SOI CMOS technology, which can be widely used in a wireless communication system with its high performance and low cost. The circuit is designed and simulated by using an idea that the total load is divided into six branches and SOI special structures. The insertion loss is less than 0.6 dB, isolation is more than 30 dB, the input power P0.1dB for 0.1 dB compression point is more than 37.5 dBm, IIP3 is more than 70 dBm, the 2nd and the 3rd harmonic compressions are more than 96 dBc, and the control voltage is (+2.46 V, 0, -2.46 V) in the frequency from 0.1 to 2.7 GHz.

Key words: silicon-on-insulator (SOI)complementary metal oxide semiconductor (CMOS)single-pole six-throw (SP6T)RF switch

Abstract: This paper presents the design of single-pole six-throw (SP6T) RF switch with IBM 0.18 μm SOI CMOS technology, which can be widely used in a wireless communication system with its high performance and low cost. The circuit is designed and simulated by using an idea that the total load is divided into six branches and SOI special structures. The insertion loss is less than 0.6 dB, isolation is more than 30 dB, the input power P0.1dB for 0.1 dB compression point is more than 37.5 dBm, IIP3 is more than 70 dBm, the 2nd and the 3rd harmonic compressions are more than 96 dBc, and the control voltage is (+2.46 V, 0, -2.46 V) in the frequency from 0.1 to 2.7 GHz.

Key words: silicon-on-insulator (SOI)complementary metal oxide semiconductor (CMOS)single-pole six-throw (SP6T)RF switch



References:

[1]

Yore M D, Nevers C A, Cortese P. High-isolation low-loss SP7T pHEMT switch suitable for antenna switch module[J]. European Microwave Integrated Circuits Conference (EuMIC), 2010: 69.

[2]

Kelly D, Brindle C, Kemerling C. The state-of-the-art of silicon on sapphire CMOS RF switches[J]. Proc IEEE CSIC Symp, 2005: 200.

[3]

Tinella C, Miehel J. A 0.7 dB insertion loss CMOS-SOI antenna switch with more than 50 dB isolation over the 2.5 to 5 GHz band[J]. Proceedings of the 28th European Solid-State Circuits Conference, 2002: 483.

[4]

Emam M, Kaamouehi E. High temperature antenna switches in 130 nm technology[J]. IEEE International SOI Conference, 2007: 121.

[5]

Chaudhry Q, Bayruns R, Arnold B. A linear CMOS SOI SP14T antenna switch for cellular applications[J]. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2012: 155.

[6]

Wang X S, Wang X, Lu F. A smartphone SP10T T/R switch in 180-nm SOI CMOS with 8 kV+ ESD protection by co-design[J]. IEEE Custom Integrated Circuits Conference (CICC), 2013: 412.

[7]

SKY13416-485 . LF: 0.1-3.0 GHz SP6T antenna switch[J]. .

[1]

Yore M D, Nevers C A, Cortese P. High-isolation low-loss SP7T pHEMT switch suitable for antenna switch module[J]. European Microwave Integrated Circuits Conference (EuMIC), 2010: 69.

[2]

Kelly D, Brindle C, Kemerling C. The state-of-the-art of silicon on sapphire CMOS RF switches[J]. Proc IEEE CSIC Symp, 2005: 200.

[3]

Tinella C, Miehel J. A 0.7 dB insertion loss CMOS-SOI antenna switch with more than 50 dB isolation over the 2.5 to 5 GHz band[J]. Proceedings of the 28th European Solid-State Circuits Conference, 2002: 483.

[4]

Emam M, Kaamouehi E. High temperature antenna switches in 130 nm technology[J]. IEEE International SOI Conference, 2007: 121.

[5]

Chaudhry Q, Bayruns R, Arnold B. A linear CMOS SOI SP14T antenna switch for cellular applications[J]. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2012: 155.

[6]

Wang X S, Wang X, Lu F. A smartphone SP10T T/R switch in 180-nm SOI CMOS with 8 kV+ ESD protection by co-design[J]. IEEE Custom Integrated Circuits Conference (CICC), 2013: 412.

[7]

SKY13416-485 . LF: 0.1-3.0 GHz SP6T antenna switch[J]. .

[1]

Hong Guan, Hao Sun, Junlin Bao, Zhipeng Wang, Shuguang Zhou, Hongwei Zhu. High-performance RF Switch in 0.13 μm RF SOI process. J. Semicond., 2019, 40(2): 022401. doi: 10.1088/1674-4926/40/2/022401

[2]

Jiahui Zhou, Hudong Chang, Xufang Zhang, Jingzhi Yang, Guiming Liu, Haiou Li, Honggang Liu. Fabrication of a novel RF switch device with high performance using In0.4Ga0.6As MOSFET technology. J. Semicond., 2016, 37(2): 024005. doi: 10.1088/1674-4926/37/2/024005

[3]

Chen Shaowu, Yu Jinzhong, Liu Jingwei, Wang Zhangtao, Xia Jinsong, Fan Zhongchao. Silicon-on-Insulator Based Optical Waveguide and Integrated Switch Matrix. J. Semicond., 2005, 26(S1): 212.

[4]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[5]

Rongrui Liu, Yubing Wang, Dongdong Yin, Han Ye, Xiaohong Yang, Qin Han. A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide. J. Semicond., 2017, 38(5): 054007. doi: 10.1088/1674-4926/38/5/054007

[6]

Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors. J. Semicond., 2019, 40(4): 042801. doi: 10.1088/1674-4926/40/4/042801

[7]

Li Yongliang, Xu Qiuxia. Dry etching of poly-Si/TaN/HfSiON gate stack for advanced complementary metal–oxide–semiconductor devices. J. Semicond., 2011, 32(7): 076001. doi: 10.1088/1674-4926/32/7/076001

[8]

Chen Yuanyuan, Yu Jinzhong, Yan Qingfeng, Chen Shaowu. Analysis on Influencing Factors of Bend Loss of Silicon-on-Insulator Waveguides. J. Semicond., 2005, 26(S1): 216.

[9]

Han Zhitao, Chu Jinkui, Meng Fantao, Jin Rencheng. Design and simulation of blue/violet sensitive photodetectors in silicon-on-insulator. J. Semicond., 2009, 30(10): 104008. doi: 10.1088/1674-4926/30/10/104008

[10]

Wei Xing, Wang Xiang, Chen Meng, Chen Jing, Zhang Miao, Wang Xi, Lin Chenglu. New Technology for Fabricating a Thin Film/Thick BOX Silicon-on-Insulator. J. Semicond., 2008, 29(7): 1350.

[11]

Huang Jiwei, Wang Zhigong. Research and Design of SPDT RF MEMS Switch. J. Semicond., 2007, 28(4): 604.

[12]

Wen Fang, Eddy Simoen, Chikang Li, Marc Aoulaiche, Jun Luo, Chao Zhao, Cor Claeys. Silicon-film-related random telegraph noise in UTBOX silicon-on-insulator nMOSFETs. J. Semicond., 2015, 36(9): 094005. doi: 10.1088/1674-4926/36/9/094005

[13]

Jiang Yibo, Zeng Chuanbin, Du Huan, Luo Jiajun, Han Zhengsheng. Holding-voltage drift of a silicon-controlled rectifier with different film thicknesses in silicon-on-insulator technology. J. Semicond., 2012, 33(3): 034006. doi: 10.1088/1674-4926/33/3/034006

[14]

Jie Cui, Lei Chen, Peng Zhao, Xu Niu, Yi Liu. A linear 180 nm SOI CMOS antenna switch module using integrated passive device filters for cellular applications. J. Semicond., 2014, 35(6): 065005. doi: 10.1088/1674-4926/35/6/065005

[15]

Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006

[16]

Zhang Zhenlong, Liu Xiangyang, Mao Yanli. Design and fabrication of a planar patch-clamp substrate using a silicon-on-insulator wafer. J. Semicond., 2009, 30(9): 096001. doi: 10.1088/1674-4926/30/9/096001

[17]

Wu Zhigang, Zhang Weigang, Wang Zhi, Kai Guiyun, Yuan Shuzhong, Dong Xiaoyi, Utaka K, Wada Y. Fabrication and Evaluation of Bragg Gratings on Optimally Designed Silicon-on-Insulator Rib Waveguides Using Electron-Beam Lithography. J. Semicond., 2006, 27(8): 1347.

[18]

Su Baoqing, Wang Chunxia, Kan Qiang, Li Junhua, Xie Yiyang, Wang Zhenzhen, Chen Hongda. A novel structure of silicon-on-insulator microring biosensor based on Young's two-slit interference and its simulation. J. Semicond., 2011, 32(7): 074010. doi: 10.1088/1674-4926/32/7/074010

[19]

Bi Jinshun, Wu Junfeng, Hai Chaohe. Simulation of a Double-Gate Dynamic Threshold Voltage Fully Depleted Silicon-on-Insulator nMOSFET. J. Semicond., 2006, 27(1): 35.

[20]

T. S. Arun Samuel, N. B. Balamurugan. Analytical modeling and simulation of germanium single gate silicon on insulator TFET. J. Semicond., 2014, 35(3): 034002. doi: 10.1088/1674-4926/35/3/034002

Search

Advanced Search >>

GET CITATION

Z Q Cheng, G G Yan, W Ni, Dandan Zhu and A Zhu, H Ni, J Li, S Chen, G H Liu. 15158A SP6T RF switch based on IBM SOI CMOS technology[J]. J. Semicond., 2016, 37(5): 055007. doi: 10.1088/1674-4926/37/5/055007.

Export: BibTex EndNote

Article Metrics

Article views: 652 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 31 July 2015 Manuscript revised: Online: Published: 01 May 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误