J. Semicond. > Volume 37 > Issue 5 > Article Number: 056001

Researching the silicon direct wafer bonding with interfacial SiO2 layer

Xiaoqing Wang , Yude Yu , and Jin Ning

+ Author Affilications + Find other works by these authors

PDF

Abstract: A silicon wafer direct bonding with a thin SiO2 layer at the interface was investigated. An atomic force microscope (AFM) was employed to characterize the surface roughness and a shearing test was carried out to evaluate the bonding strength. Experiments were performed to analyze the relations of surface roughness and bonding strength with the thickness of SiO2 which was grown by thermal oxidation and plasma enhanced chemical vapor deposition (PECVD) respectively. The bonding strength can reach up to 18 MPa for thermal oxidation and 8 MPa for PECVD after a 2-h 400 ℃ annealing. Results indicate that the bonding strength is negatively correlated to the thickness of SiO2 at the interface, which is important in designing the MEMS-based devices and other devices built with wafer direct bonding.

Key words: wafer direct bondingsurface roughnessbonding strength

Abstract: A silicon wafer direct bonding with a thin SiO2 layer at the interface was investigated. An atomic force microscope (AFM) was employed to characterize the surface roughness and a shearing test was carried out to evaluate the bonding strength. Experiments were performed to analyze the relations of surface roughness and bonding strength with the thickness of SiO2 which was grown by thermal oxidation and plasma enhanced chemical vapor deposition (PECVD) respectively. The bonding strength can reach up to 18 MPa for thermal oxidation and 8 MPa for PECVD after a 2-h 400 ℃ annealing. Results indicate that the bonding strength is negatively correlated to the thickness of SiO2 at the interface, which is important in designing the MEMS-based devices and other devices built with wafer direct bonding.

Key words: wafer direct bondingsurface roughnessbonding strength



References:

[1]

Tong Q Y, Cha G, Gafiteanu R. Low temperature wafer direct bonding[J]. J Microelectromech Syst, 1994, 3(1): 29.

[2]

Han Weihua, Yu Jinzhong, Wang Qiming. Theoretical analysis on bonding energies for silicon direct bonding[J]. Chinese Journal of Semiconductors, 2001, 22(2): 140.

[3]

Ma Canghai, Liao Guanglan, Shi Tielin. Wafer direct bonding based on UV exposure[J]. Journal of Semiconductors, 2008, 29(7): 1369.

[4]

Zhu Shiyang, Li Aizhen, Huang Yiping. Transfer of thin epitaxial silicon films by wafer bonding and splitting of double layered porous silicon for SOI fabrication[J]. Chinese Journal of Semiconductors, 2001, 22(12): 1501.

[5]

Dragoi V, Pabo E, Burggraf J. CMOS: compatible wafer bonding for MEMS and wafer-level 3D integration[J]. Microsyst Technol, 2012, 18(7/8): 1065.

[6]

Keskitalo N, Tiensuu S, Hallén A. Characterization of hydrophobic bonded silicon wafers[J]. Nucl Instrum Meth B, 2002, 186(1-4): 66.

[7]

Tan C S, Fan A, Chen K N. Low-temperature thermal oxide to plasma-enhanced chemical vapor deposition oxide wafer bonding for thin-film transfer application[J]. Appl Phys Lett, 2003, 82(16): 2649.

[8]

He R, Fujino M, Yamauchi A. Novel hydrophilic SiO2 wafer bonding using combined surface-activated bonding technique[J]. Jpn J Appl Phys, 2015, 54: 030218.

[9]

Kurashima Y, Maeda A, Takagi H. Characterization of bonding interface prepared by room-temperature Si wafer direct bonding using the surface smoothing effect of a Ne fast atom beam[J]. Microelectron Eng, 2014, 118(5): 1.

[10]

Gösele U, Bluhm Y, Kästner G. Fundamental issues in wafer bonding[J]. J Vac Sci Technol, 1999, 17(4): 1145.

[11]

Li D L, Shang Z G, Wang S Q. Low temperature Si/Si wafer direct bonding using a plasma activated method[J]. J Zhejiang Uni, 2013, 14(4): 244.

[12]

Masteika V, Kowal J, Braithwaite N S J. A review of hydrophilic silicon wafer bonding[J]. ECS J Solid State SC, 2014, 3(4).

[13]

Plach T, Hingerl K, Tollabimazraehno S. Mechanisms for room temperature direct wafer bonding[J]. J Appl Phys, 2013, 113(9): 094905.

[14]

Plummer J D, Deal M D, Griffin P B. Silicon VLSI technology[J]. Englewood Cliffs, NJ: Prentice Hall, 2000.

[1]

Tong Q Y, Cha G, Gafiteanu R. Low temperature wafer direct bonding[J]. J Microelectromech Syst, 1994, 3(1): 29.

[2]

Han Weihua, Yu Jinzhong, Wang Qiming. Theoretical analysis on bonding energies for silicon direct bonding[J]. Chinese Journal of Semiconductors, 2001, 22(2): 140.

[3]

Ma Canghai, Liao Guanglan, Shi Tielin. Wafer direct bonding based on UV exposure[J]. Journal of Semiconductors, 2008, 29(7): 1369.

[4]

Zhu Shiyang, Li Aizhen, Huang Yiping. Transfer of thin epitaxial silicon films by wafer bonding and splitting of double layered porous silicon for SOI fabrication[J]. Chinese Journal of Semiconductors, 2001, 22(12): 1501.

[5]

Dragoi V, Pabo E, Burggraf J. CMOS: compatible wafer bonding for MEMS and wafer-level 3D integration[J]. Microsyst Technol, 2012, 18(7/8): 1065.

[6]

Keskitalo N, Tiensuu S, Hallén A. Characterization of hydrophobic bonded silicon wafers[J]. Nucl Instrum Meth B, 2002, 186(1-4): 66.

[7]

Tan C S, Fan A, Chen K N. Low-temperature thermal oxide to plasma-enhanced chemical vapor deposition oxide wafer bonding for thin-film transfer application[J]. Appl Phys Lett, 2003, 82(16): 2649.

[8]

He R, Fujino M, Yamauchi A. Novel hydrophilic SiO2 wafer bonding using combined surface-activated bonding technique[J]. Jpn J Appl Phys, 2015, 54: 030218.

[9]

Kurashima Y, Maeda A, Takagi H. Characterization of bonding interface prepared by room-temperature Si wafer direct bonding using the surface smoothing effect of a Ne fast atom beam[J]. Microelectron Eng, 2014, 118(5): 1.

[10]

Gösele U, Bluhm Y, Kästner G. Fundamental issues in wafer bonding[J]. J Vac Sci Technol, 1999, 17(4): 1145.

[11]

Li D L, Shang Z G, Wang S Q. Low temperature Si/Si wafer direct bonding using a plasma activated method[J]. J Zhejiang Uni, 2013, 14(4): 244.

[12]

Masteika V, Kowal J, Braithwaite N S J. A review of hydrophilic silicon wafer bonding[J]. ECS J Solid State SC, 2014, 3(4).

[13]

Plach T, Hingerl K, Tollabimazraehno S. Mechanisms for room temperature direct wafer bonding[J]. J Appl Phys, 2013, 113(9): 094905.

[14]

Plummer J D, Deal M D, Griffin P B. Silicon VLSI technology[J]. Englewood Cliffs, NJ: Prentice Hall, 2000.

[1]

Ma Canghai, Liao Guanglan, Shi Tielin, Tang Zirong, Liu Shiyuan, Nie Lei, Lin Xiaohui. Wafer Direct Bonding Based on UV Exposure. J. Semicond., 2008, 29(7): 1369.

[2]

Zhiqiang Fang, Xu Mao, Jinling Yang, Fuhua Yang. Low temperature Sn-rich Au-Sn wafer-level bonding. J. Semicond., 2013, 34(10): 106001. doi: 10.1088/1674-4926/34/10/106001

[3]

Zhan Da, Ma Xiaobo, Liu Weili, Song Zhitang, Feng Songlin. Fabrication of SOI Material Using Low Temperature Bonding Technology. J. Semicond., 2006, 27(S1): 189.

[4]

Yan Li, Ming Sun, Xinhuan Niu, Yuling Liu, Yangang He, Hailong Li, Aochen Wang, Hongbo Li. Removal of residual CuO particles on the post CMP wafer surface of multi-layered copper. J. Semicond., 2014, 35(4): 046001. doi: 10.1088/1674-4926/35/4/046001

[5]

Bo Duan, Jianwei Zhou, Yuling Liu, Mingbin Sun, Yufeng Zhang. Surface roughness of optical quartz substrate by chemical mechanical polishing. J. Semicond., 2014, 35(11): 116001. doi: 10.1088/1674-4926/35/11/116001

[6]

Jiaojiao Gao, Yuling Liu, Chenwei Wang, Jin Cui. Mechanism analysis of the affect the copper line surface roughness after FA/O alkaline barrier CMP. J. Semicond., 2014, 35(12): 126003. doi: 10.1088/1674-4926/35/12/126003

[7]

Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Investigation on surface roughness in chemical mechanical polishing of TiO2 thin film. J. Semicond., 2014, 35(6): 063003. doi: 10.1088/1674-4926/35/6/063003

[8]

Khushnuma Asghar, D. Das. Effect of polishing parameters on abrasive free chemical mechanical planarization of semi-polar(11$\bar{2}$2) aluminum nitride surface. J. Semicond., 2016, 37(3): 036001. doi: 10.1088/1674-4926/37/3/036001

[9]

Wang Hui, Guo Xia, Liang Ting, Liu Shiwen, Gao Guo, Shen Guangdi. GaAs/GaN Direct Wafer Bonding Based on Hydrophilic Surface Treatment. J. Semicond., 2006, 27(6): 1042.

[10]

Liu Yang, Baimei Tan, Yuling Liu, Baohong Gao, Chunyu Han. Optimization of cleaning process parameters to remove abrasive particles in post-Cu CMP cleaning. J. Semicond., 2018, 39(12): 126002. doi: 10.1088/1674-4926/39/12/126002

[11]

Wang Chenwei, Liu Yuling, Niu Xinhuan, Tian Jianying, Gao Baohong, Zhang Xiaoqiang. An advanced alkaline slurry for barrier chemical mechanical planarization on patterned wafers. J. Semicond., 2012, 33(4): 046001. doi: 10.1088/1674-4926/33/4/046001

[12]

Yan Li, Yuling Liu, Xinhuan Niu, Xiaofeng Bu, Hongbo Li, Jiying Tang, Shiyan Fan. Application of a macromolecular chelating agent in chemical mechanical polishing of copper film under the condition of low pressure and low abrasive concentration. J. Semicond., 2014, 35(1): 016001. doi: 10.1088/1674-4926/35/1/016001

[13]

Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Slurry components of TiO2 thin film in chemical mechanical polishing. J. Semicond., 2014, 35(10): 106003. doi: 10.1088/1674-4926/35/10/106003

[14]

Haiwen Deng, Baimei Tan, Baohong Gao, Chenwei Wang, Zhangbing Gu, Yan Zhang. A novel cleaner for colloidal silica abrasive removal in post-Cu CMP cleaning. J. Semicond., 2015, 36(10): 106002. doi: 10.1088/1674-4926/36/10/106002

[15]

Shiyan Fan, Yuling Liu, Ming Sun, Jiying Tang, Chenqi Yan, Hailong Li, Shengli Wang. Next generation barrier CMP slurry with novel weakly alkaline chelating agent. J. Semicond., 2015, 36(1): 016002. doi: 10.1088/1674-4926/36/1/016002

[16]

Haobo Yuan, Yuling Liu, Mengting Jiang, Guodong Chen, Weijuan Liu, Shengli Wang. Effect of H2O2 and nonionic surfactant in alkaline copper slurry. J. Semicond., 2015, 36(1): 016001. doi: 10.1088/1674-4926/36/1/016001

[17]

Aochen Wang, Shengli Wang, Yuling Liu, Yan Li. Electrochemical investigation of copper chemical mechanical planarization in alkaline slurry without an inhibitor. J. Semicond., 2014, 35(2): 026003. doi: 10.1088/1674-4926/35/2/026003

[18]

Lao Yanfeng, Cao Chunfang, Wu Huizhen, Cao Meng, Liu Cheng, Xie Zhengsheng, Gong Qian. Fabrication of InAsP/InGaAsP Quantum-Well 1.3μm VCSELsby Direct Wafer-Bonding. J. Semicond., 2008, 29(11): 2286.

[19]

Guo Debo, Liang Meng, Fan Manning, Liu Zhiqiang, Wang Liangchen, Wang Guohong. Study of AIGalnP/Si Wafer Bonding. J. Semicond., 2007, 28(S1): 558.

[20]

Chen Xin'an, Huang Qing'an. Impurity Distribution of Silicon Direct Bonding. J. Semicond., 2006, 27(11): 2051.

Search

Advanced Search >>

GET CITATION

X Q Wang, Y D Yu, J Ning. Researching the silicon direct wafer bonding with interfacial SiO2 layer[J]. J. Semicond., 2016, 37(5): 056001. doi: 10.1088/1674-4926/37/5/056001.

Export: BibTex EndNote

Article Metrics

Article views: 488 Times PDF downloads: 5 Times Cited by: 0 Times

History

Manuscript received: 13 August 2015 Manuscript revised: Online: Published: 01 May 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误