J. Semicond. > Volume 38 > Issue 1 > Article Number: 011003

Applications of cesium in the perovskite solar cells

Fengjun Ye 1, §, , Wenqiang Yang 1, §, , Deying Luo 1, , Rui Zhu 1, 2, 3, , and Qihuang Gong 1, 2, 3,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Perovskite solar cells have experienced an unprecedented rapid development in the power conversion efficiency (PCE) during the past 7 years, and the record PCE has been already comparable to the traditional polycrystalline silicon solar cells. Presently, it is more urgent to address the challenge on device stability for the future commercial application. Recently, the inorganic cesium lead halide perovskite has been intensively studied as one of the alternative candidates to improve device stability through controlling the phase transition. The cesium (Cs)-doped perovskites show more superior stability comparing with organic methylammonium (MA) lead halide perovskite or formamidinium (FA) lead halide perovskite. Here, recent progress of the inorganic cesium application in organic-inorganic perovskite solar cells (PSCs) is highlighted from the viewpoints of the device efficiency and the device stability.

Key words: cesiumperovskite solar cellsdevice efficiencydevice stability

Abstract: Perovskite solar cells have experienced an unprecedented rapid development in the power conversion efficiency (PCE) during the past 7 years, and the record PCE has been already comparable to the traditional polycrystalline silicon solar cells. Presently, it is more urgent to address the challenge on device stability for the future commercial application. Recently, the inorganic cesium lead halide perovskite has been intensively studied as one of the alternative candidates to improve device stability through controlling the phase transition. The cesium (Cs)-doped perovskites show more superior stability comparing with organic methylammonium (MA) lead halide perovskite or formamidinium (FA) lead halide perovskite. Here, recent progress of the inorganic cesium application in organic-inorganic perovskite solar cells (PSCs) is highlighted from the viewpoints of the device efficiency and the device stability.

Key words: cesiumperovskite solar cellsdevice efficiencydevice stability



References:

[1]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[2]

Xing G, Mathews N, Sun S. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344. doi: 10.1126/science.1243167

[3]

Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Adv Mater, 2014, 26(27): 4653. doi: 10.1002/adma.v26.27

[4]

Zhao Y, Zhu K. Solution chemistry engineering toward highefficiency perovskite solar cells[J]. J Phys Chem Lett, 2014, 5(23): 4175. doi: 10.1021/jz501983v

[5]

NREL chart, www.nrel.gov/ncpv/images/efficiency_chart.jpg

[6]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[7]

Chen W, Wu Y, Yue Y. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350(6263): 944. doi: 10.1126/science.aad1015

[8]

Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planarheterojunction hybrid solar cells. Adv Mater, 2014, 26(24): 4107

[9]

Shao Y, Yuan Y, Huang J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells[J]. Nat Energy, 2016, 1: 15001. doi: 10.1038/nenergy.2015.1

[10]

Sun S, Salim T, Mathews N. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy Environ Sci, 2014, 7(1): 399. doi: 10.1039/C3EE43161D

[11]

Xiao Z, Bi C, Shao Y. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy Environ Sci, 2014, 7(8): 2619. doi: 10.1039/C4EE01138D

[12]

You J, Meng L, Song T B. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nat Nanotechnol, 2016, 11(1): 75.

[13]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316. doi: 10.1038/nature12340

[14]

Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat Photonics, 2014, 8(2): 133.

[15]

Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395. doi: 10.1038/nature12509

[16]

Brivio F, Frost J M, Skelton J M. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide[J]. Phys Rev B, 2015, 92(14): 144308. doi: 10.1103/PhysRevB.92.144308

[17]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg Chem, 2013, 52(15): 9019. doi: 10.1021/ic401215x

[18]

Conings B, Drijkoningen J, Gauquelin N. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Adv Energy Mater, 2015, 5(15): 1500477. doi: 10.1002/aenm.201500477

[19]

Han Y, Meyer S, Dkhissi Y. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity[J]. J Mater Chem A, 2015, 3(15): 8139. doi: 10.1039/C5TA00358J

[20]

Misra R K, Aharon S, Li B. Temperature-and componentdependent degradation of perovskite photovoltaic materials under concentrated sunlight[J]. J Phys Chem Lett, 2015, 6(3): 326. doi: 10.1021/jz502642b

[21]

Hailegnaw B, Kirmayer S, Edri E. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells[J]. J Phys Chem Lett, 2015, 6(9): 1543. doi: 10.1021/acs.jpclett.5b00504

[22]

Leguy A l M, Hu Y, Campoy-Quiles M. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells[J]. Chem Mater, 2015, 27(9): 3397. doi: 10.1021/acs.chemmater.5b00660

[23]

Yang J, Siempelkamp B D, Liu D. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques[J]. ACS Nano, 2015, 9(2): 1955. doi: 10.1021/nn506864k

[24]

Binek A, Hanusch F C, Docampo P. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide[J]. J Phys Chem Lett, 2015, 6(7): 1249. doi: 10.1021/acs.jpclett.5b00380

[25]

Eperon G E, Stranks S D, Menelaou C. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7(3): 982. doi: 10.1039/c3ee43822h

[26]

Koh T M, Fu K, Fang Y. Formamidinium-containing metalhalide: an alternative material for near-IR absorption perovskite solar cells[J]. J Phys Chem C, 2013, 118(30): 16458.

[27]

Lee J W, Seol D J, Cho A N. High-efficiency perovskite solar cells based on the black polymorph of HC (NH2)2PbI3[J]. Adv Mater, 2014, 26(29): 4991. doi: 10.1002/adma.201401137

[28]

Lee D, Lee Y L, Hong W T. Oxygen surface exchange kinetics and stability of (La, Sr)2CoO4±δ/La1-xSrxMO3-δ(MD=Co and Fe) hetero-interfaces at intermediate temperatures[J]. J Mater Chem A, 2015, 3(5): 2144. doi: 10.1039/C4TA05795C

[29]

Pang S, Hu H, Zhang J. NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells[J]. Chem Mater, 2014, 26(3): 1485. doi: 10.1021/cm404006p

[30]

Pellet N, Gao P, Gregori G. Mixed-organic-cation Perovskite photovoltaics for enhanced solar-light harvesting[J]. Angew Chem Int Edit, 2014, 53(12): 3151. doi: 10.1002/anie.201309361

[31]

Seol D J, Lee J W, Park N G. On the role of interfaces in planarstructured HC (NH2)2PbI3 perovskite solar Cells[J]. Chem Sus Chem, 2015, 8(14): 2414. doi: 10.1002/cssc.v8.14

[32]

Kulbak M, Gupta S, Kedem N. Cesium enhances longterm stability of lead bromide perovskite-based solar cells[J]. J Phys Chem Lett, 2015, 7(1): 167.

[33]

Lee J W, Kim D H, Kim H S. Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell[J]. Adv Energy Mater, 2015, 5(20): 1501310. doi: 10.1002/aenm.201501310

[34]

McMeekin D P, Sadoughi G, Rehman W. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells[J]. Science, 2016, 351(6269): 151. doi: 10.1126/science.aad5845

[35]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[36]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[37]

Hao F, Stoumpos C C, Cao D H. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nat Photonics, 2014, 8(6): 489. doi: 10.1038/nphoton.2014.82

[38]

Goldschmidt V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477. doi: 10.1007/BF01507527

[39]

Baikie T, Fang Y, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[40]

Mitzi D B. Solution-processed inorganic semiconductors[J]. J Mater Chem, 2004, 14(15): 2355. doi: 10.1039/b403482a

[41]

Choi H, Jeong J, Kim H B. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells[J]. Nano Energy, 2014, 7: 80. doi: 10.1016/j.nanoen.2014.04.017

[42]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535): 476. doi: 10.1038/nature14133

[43]

Etgar L, Gao P, Xue Z. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J Am Chem Soc, 2012, 134(42): 17396. doi: 10.1021/ja307789s

[44]

Ball J M, Lee M M, Hey A. Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J]. Energy Environ Sci, 2013, 6(6): 1739. doi: 10.1039/c3ee40810h

[45]

Carnie M J, Charbonneau C, Davies M L. A one-step low temperature processing route for organolead halide perovskite solar cells[J]. Chem Commun, 2013, 49(72): 7893. doi: 10.1039/c3cc44177f

[46]

Hu Q, Wu J, Jiang C. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%[J]. ACS Nano, 2014, 8(10): 10161. doi: 10.1021/nn5029828

[47]

Li W, Li J, Niu G. Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells[J]. J Mater Chem A, 2016, 4(30): 11688. doi: 10.1039/C5TA09165A

[48]

Li W, Zhang W, Van Reenen S. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification[J]. Energy Environ Sci, 2016, 9(2): 490. doi: 10.1039/C5EE03522H

[49]

Sutton R J, Eperon G E, Miranda L. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Adv Energy Mater, 2016, 6(8): 1502458. doi: 10.1002/aenm.201502458

[50]

Hao F, Stoumpos C C, Cao D H. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nat Photon, 2014, 8: 489. doi: 10.1038/nphoton.2014.82

[51]

Kumar M H, Dharani S, Leong W L. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation[J]. Adv Mater, 2014, 26: 7122. doi: 10.1002/adma.201401991

[52]

Sabba D, Mulmudi H K, Prabhakar R R. Impact of anionic br substitution on open circuit voltage in lead free perovskite (CsSnI3xBrx/solar cells[J]. J Phys Chem C, 2015, 119: 1763. doi: 10.1021/jp5126624

[53]

Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J Photochem Photobiol C, 2000, 1(1): 1. doi: 10.1016/S1389-5567(00)00002-2

[54]

Ito S, Tanaka S, Manabe K. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells[J]. J Phys Chem C, 2014, 118(30): 16995. doi: 10.1021/jp500449z

[55]

Leijtens T, Eperon G E, Pathak S. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nat Commun, 2013, 4: 1.

[56]

Noh J H, Im S H, Heo J H. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett, 2013, 13(4): 1764. doi: 10.1021/nl400349b

[1]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[2]

Xing G, Mathews N, Sun S. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344. doi: 10.1126/science.1243167

[3]

Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Adv Mater, 2014, 26(27): 4653. doi: 10.1002/adma.v26.27

[4]

Zhao Y, Zhu K. Solution chemistry engineering toward highefficiency perovskite solar cells[J]. J Phys Chem Lett, 2014, 5(23): 4175. doi: 10.1021/jz501983v

[5]

NREL chart, www.nrel.gov/ncpv/images/efficiency_chart.jpg

[6]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[7]

Chen W, Wu Y, Yue Y. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350(6263): 944. doi: 10.1126/science.aad1015

[8]

Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planarheterojunction hybrid solar cells. Adv Mater, 2014, 26(24): 4107

[9]

Shao Y, Yuan Y, Huang J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells[J]. Nat Energy, 2016, 1: 15001. doi: 10.1038/nenergy.2015.1

[10]

Sun S, Salim T, Mathews N. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy Environ Sci, 2014, 7(1): 399. doi: 10.1039/C3EE43161D

[11]

Xiao Z, Bi C, Shao Y. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy Environ Sci, 2014, 7(8): 2619. doi: 10.1039/C4EE01138D

[12]

You J, Meng L, Song T B. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nat Nanotechnol, 2016, 11(1): 75.

[13]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316. doi: 10.1038/nature12340

[14]

Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat Photonics, 2014, 8(2): 133.

[15]

Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395. doi: 10.1038/nature12509

[16]

Brivio F, Frost J M, Skelton J M. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide[J]. Phys Rev B, 2015, 92(14): 144308. doi: 10.1103/PhysRevB.92.144308

[17]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg Chem, 2013, 52(15): 9019. doi: 10.1021/ic401215x

[18]

Conings B, Drijkoningen J, Gauquelin N. Intrinsic thermal instability of methylammonium lead trihalide perovskite[J]. Adv Energy Mater, 2015, 5(15): 1500477. doi: 10.1002/aenm.201500477

[19]

Han Y, Meyer S, Dkhissi Y. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity[J]. J Mater Chem A, 2015, 3(15): 8139. doi: 10.1039/C5TA00358J

[20]

Misra R K, Aharon S, Li B. Temperature-and componentdependent degradation of perovskite photovoltaic materials under concentrated sunlight[J]. J Phys Chem Lett, 2015, 6(3): 326. doi: 10.1021/jz502642b

[21]

Hailegnaw B, Kirmayer S, Edri E. Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells[J]. J Phys Chem Lett, 2015, 6(9): 1543. doi: 10.1021/acs.jpclett.5b00504

[22]

Leguy A l M, Hu Y, Campoy-Quiles M. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells[J]. Chem Mater, 2015, 27(9): 3397. doi: 10.1021/acs.chemmater.5b00660

[23]

Yang J, Siempelkamp B D, Liu D. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques[J]. ACS Nano, 2015, 9(2): 1955. doi: 10.1021/nn506864k

[24]

Binek A, Hanusch F C, Docampo P. Stabilization of the trigonal high-temperature phase of formamidinium lead iodide[J]. J Phys Chem Lett, 2015, 6(7): 1249. doi: 10.1021/acs.jpclett.5b00380

[25]

Eperon G E, Stranks S D, Menelaou C. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7(3): 982. doi: 10.1039/c3ee43822h

[26]

Koh T M, Fu K, Fang Y. Formamidinium-containing metalhalide: an alternative material for near-IR absorption perovskite solar cells[J]. J Phys Chem C, 2013, 118(30): 16458.

[27]

Lee J W, Seol D J, Cho A N. High-efficiency perovskite solar cells based on the black polymorph of HC (NH2)2PbI3[J]. Adv Mater, 2014, 26(29): 4991. doi: 10.1002/adma.201401137

[28]

Lee D, Lee Y L, Hong W T. Oxygen surface exchange kinetics and stability of (La, Sr)2CoO4±δ/La1-xSrxMO3-δ(MD=Co and Fe) hetero-interfaces at intermediate temperatures[J]. J Mater Chem A, 2015, 3(5): 2144. doi: 10.1039/C4TA05795C

[29]

Pang S, Hu H, Zhang J. NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells[J]. Chem Mater, 2014, 26(3): 1485. doi: 10.1021/cm404006p

[30]

Pellet N, Gao P, Gregori G. Mixed-organic-cation Perovskite photovoltaics for enhanced solar-light harvesting[J]. Angew Chem Int Edit, 2014, 53(12): 3151. doi: 10.1002/anie.201309361

[31]

Seol D J, Lee J W, Park N G. On the role of interfaces in planarstructured HC (NH2)2PbI3 perovskite solar Cells[J]. Chem Sus Chem, 2015, 8(14): 2414. doi: 10.1002/cssc.v8.14

[32]

Kulbak M, Gupta S, Kedem N. Cesium enhances longterm stability of lead bromide perovskite-based solar cells[J]. J Phys Chem Lett, 2015, 7(1): 167.

[33]

Lee J W, Kim D H, Kim H S. Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell[J]. Adv Energy Mater, 2015, 5(20): 1501310. doi: 10.1002/aenm.201501310

[34]

McMeekin D P, Sadoughi G, Rehman W. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells[J]. Science, 2016, 351(6269): 151. doi: 10.1126/science.aad5845

[35]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[36]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[37]

Hao F, Stoumpos C C, Cao D H. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nat Photonics, 2014, 8(6): 489. doi: 10.1038/nphoton.2014.82

[38]

Goldschmidt V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477. doi: 10.1007/BF01507527

[39]

Baikie T, Fang Y, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[40]

Mitzi D B. Solution-processed inorganic semiconductors[J]. J Mater Chem, 2004, 14(15): 2355. doi: 10.1039/b403482a

[41]

Choi H, Jeong J, Kim H B. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells[J]. Nano Energy, 2014, 7: 80. doi: 10.1016/j.nanoen.2014.04.017

[42]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535): 476. doi: 10.1038/nature14133

[43]

Etgar L, Gao P, Xue Z. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J Am Chem Soc, 2012, 134(42): 17396. doi: 10.1021/ja307789s

[44]

Ball J M, Lee M M, Hey A. Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J]. Energy Environ Sci, 2013, 6(6): 1739. doi: 10.1039/c3ee40810h

[45]

Carnie M J, Charbonneau C, Davies M L. A one-step low temperature processing route for organolead halide perovskite solar cells[J]. Chem Commun, 2013, 49(72): 7893. doi: 10.1039/c3cc44177f

[46]

Hu Q, Wu J, Jiang C. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%[J]. ACS Nano, 2014, 8(10): 10161. doi: 10.1021/nn5029828

[47]

Li W, Li J, Niu G. Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells[J]. J Mater Chem A, 2016, 4(30): 11688. doi: 10.1039/C5TA09165A

[48]

Li W, Zhang W, Van Reenen S. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification[J]. Energy Environ Sci, 2016, 9(2): 490. doi: 10.1039/C5EE03522H

[49]

Sutton R J, Eperon G E, Miranda L. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Adv Energy Mater, 2016, 6(8): 1502458. doi: 10.1002/aenm.201502458

[50]

Hao F, Stoumpos C C, Cao D H. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nat Photon, 2014, 8: 489. doi: 10.1038/nphoton.2014.82

[51]

Kumar M H, Dharani S, Leong W L. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation[J]. Adv Mater, 2014, 26: 7122. doi: 10.1002/adma.201401991

[52]

Sabba D, Mulmudi H K, Prabhakar R R. Impact of anionic br substitution on open circuit voltage in lead free perovskite (CsSnI3xBrx/solar cells[J]. J Phys Chem C, 2015, 119: 1763. doi: 10.1021/jp5126624

[53]

Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. J Photochem Photobiol C, 2000, 1(1): 1. doi: 10.1016/S1389-5567(00)00002-2

[54]

Ito S, Tanaka S, Manabe K. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells[J]. J Phys Chem C, 2014, 118(30): 16995. doi: 10.1021/jp500449z

[55]

Leijtens T, Eperon G E, Pathak S. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nat Commun, 2013, 4: 1.

[56]

Noh J H, Im S H, Heo J H. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett, 2013, 13(4): 1764. doi: 10.1021/nl400349b

[1]

Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002

[2]

Dan Han, Chenmin Dai, Shiyou Chen. Calculation studies on point defects in perovskite solar cells. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006

[3]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[4]

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

[5]

Yamei Wu, Ruixia Yang, Hanmin Tian, Shuai Chen. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction. J. Semicond., 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[6]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[7]

Lin Fan, Fengyou Wang, Junhui Liang, Xin Yao, Jia Fang, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact. J. Semicond., 2017, 38(1): 014003. doi: 10.1088/1674-4926/38/1/014003

[8]

Tianyue Wang, Jiewei Chen, Gaoxiang Wu, Dandan Song, Meicheng Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005

[9]

Chen Yanhu, Shen Huajun, Liu Xinyu, Xu Hui, Li Ling, Li Huijun. Design consideration of the thermal and electro stability of multi-finger HBTs based on different device structures. J. Semicond., 2010, 31(10): 104003. doi: 10.1088/1674-4926/31/10/104003

[10]

Wang Jianbo, Xiang Bing, Lou Chaogang, Zhang Xiaobing, Lei Wei, Mu Hui, Sun Qiang. Calculation of the Efficiency of GaAs Quantum Well Solar Cells. J. Semicond., 2006, 27(6): 1038.

[11]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[12]

Lou Chaogang, Yan Ting, Sun Qiang, Xu Jun, Zhang Xiaobing, Lei Wei. External Quantum Efficiency of Quantum Well Solar Cells. J. Semicond., 2008, 29(11): 2088.

[13]

Jingbi You. Preface to the Special Topic on Perovskite Solar Cells. J. Semicond., 2017, 38(1): 011001. doi: 10.1088/1674-4926/38/1/011001

[14]

Yang (Michael) Yang. Surface passivation of perovskite film for efficient solar cells. J. Semicond., 2019, 40(4): 040204. doi: 10.1088/1674-4926/40/4/040204

[15]

Guo Aijuan, Ye Famin, Guo Lihui, Ji Dong, Feng Shimeng. Effect of the back surface topography on the efficiency in silicon solar cells. J. Semicond., 2009, 30(7): 074003. doi: 10.1088/1674-4926/30/7/074003

[16]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[17]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[18]

Liu Xiaoyan, Liu Enfeng, Du Gang, Liu Yibo, Xia Zhiliang, Han Ruqi. Device Simulation for Nanoscale MOSFET. J. Semicond., 2003, 24(S1): 148.

[19]

He Wei, Zhang Zhengxuan. SOI Device Design for SEU Hardening. J. Semicond., 2006, 27(S1): 291.

[20]

Xiaorang Tian, Peide Han, Guanchao Zhao, Rong Yang, Liwei Li, Yuan Meng, Ted Guo. Pyramid size control and morphology treatment for high-efficiency silicon heterojunction solar cells. J. Semicond., 2019, 40(3): 032703. doi: 10.1088/1674-4926/40/3/032703

Search

Advanced Search >>

GET CITATION

F J Ye, W Q Yang, D Y Luo, R Zhu, Q H Gong. Applications of cesium in the perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003.

Export: BibTex EndNote

Article Metrics

Article views: 1774 Times PDF downloads: 45 Times Cited by: 0 Times

History

Manuscript received: 23 August 2016 Manuscript revised: 09 October 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误