J. Semicond. > Volume 38 > Issue 1 > Article Number: 011006

Calculation studies on point defects in perovskite solar cells

Dan Han 1, 2, , Chenmin Dai 2, and Shiyou Chen 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The close-to-optimal band gap, large absorption coefficient, low manufacturing cost and rapid increase in power conversion efficiency make the organic-inorganic hybrid halide (CH3NH3PbI3) and related perovskite solar cells very promising for commercialization. The properties of point defects in the absorber layer semiconductors have important influence on the photovoltaic performance of solar cells, so the investigation on the defect properties in the perovskite semiconductors is necessary for the optimization of their photovoltaic performance. In this work, we give a brief review to the first-principles calculation studies on the defect properties in a series of perovskite semiconductors, including the organic-inorganic hybrid perovskites and inorganic halide perovskites. Experimental identification of these point defects and characterization of their properties are called for.

Key words: point defectsperovskite solar cellsnon-radiative recombination

Abstract: The close-to-optimal band gap, large absorption coefficient, low manufacturing cost and rapid increase in power conversion efficiency make the organic-inorganic hybrid halide (CH3NH3PbI3) and related perovskite solar cells very promising for commercialization. The properties of point defects in the absorber layer semiconductors have important influence on the photovoltaic performance of solar cells, so the investigation on the defect properties in the perovskite semiconductors is necessary for the optimization of their photovoltaic performance. In this work, we give a brief review to the first-principles calculation studies on the defect properties in a series of perovskite semiconductors, including the organic-inorganic hybrid perovskites and inorganic halide perovskites. Experimental identification of these point defects and characterization of their properties are called for.

Key words: point defectsperovskite solar cellsnon-radiative recombination



References:

[1]

Zhao J H, Wang A H, Green M A. 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells[J]. Appl Phys Lett, 1998, 73(1): 1991.

[2]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (Version 45)[J]. Prog Photovoltaics, 2015, 23(1): 1. doi: 10.1002/pip.v23.1

[3]

Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE J Photovoltaics, 2013, 3(4): 1184. doi: 10.1109/JPHOTOV.2013.2270351

[4]

Smith D D, Cousins P J, Masad A. Generation III high efficiency lower cost technology:transition to full scale manufacturing[J]. 2012 IEEE 38th Photovoltaic Specialists Conference, 2012: 001594.

[5]

Polman A, Knight M, Garnett E C. Photovoltaic materials:Present efficiencies and future challenges[J]. Science, 2016, 352(6283): 307.

[6]

Kayes B M, Hui N, Twist R. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination[J]. 201137th IEEE Photovoltaic Specialists Conferenc, 2011: 000004.

[7]

King R R, Law D C, Edmondson K M. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells[J]. Appl Phys Lett, 2007, 90(18): 183516. doi: 10.1063/1.2734507

[8]

Geisz J F, Kurtz S, Wanlass M W. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction[J]. Appl Phys Lett, 2007, 91(2): 023502. doi: 10.1063/1.2753729

[9]

Ma J, Kuciauskas D, Albin D. Dependence of the minoritycarrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations[J]. Phys Rev Lett, 2013, 111(6): 067402. doi: 10.1103/PhysRevLett.111.067402

[10]

Wei S H, Zhang S. Chemical trends of defect formation and doping limit in II-VI semiconductors:the case of CdTe[J]. Phys Rev B, 2002, 66: 155211. doi: 10.1103/PhysRevB.66.155211

[11]

Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Adv Mater, 2010, 22(20): E156. doi: 10.1002/adma.200904155

[12]

Wei W, Winkler M T, Gunawan O. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv Energy Mater, 2014, 4(7): 1301465. doi: 10.1002/aenm.201301465

[13]

Zhang S B, Wei S H, Zunger A. Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Phys Rev B, 1998, 57(16): 9642. doi: 10.1103/PhysRevB.57.9642

[14]

Huang B, Chen S, Deng H X. Origin of reduced efficiency in Cu (In, Ga) Se2 solar cells with high Ga concentration:Alloy solubility versus intrinsic defects[J]. IEEE J Photovoltaics, 2014, 4(1): 477. doi: 10.1109/JPHOTOV.2013.2285617

[15]

Tanaka K, Oonuki M, Moritake N. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing[J]. Sol Energy Mater Sol Cells, 2009, 93(5): 583. doi: 10.1016/j.solmat.2008.12.009

[16]

Weber A, Schmidt S, Abou-Ras D. Texture inheritance in thin-film growth of Cu2ZnSnS4[J]. Appl Phys Lett, 2009, 95(4): 041904. doi: 10.1063/1.3192357

[17]

Lin X, Ennaoui A, Levcenko S. Defect study of Cu2ZnSn (SxSe1-x)(4) thin film absorbers using photoluminescence and modulated surface photovoltage spectroscopy[J]. Appl Phys Lett, 2015, 106(1): 013903. doi: 10.1063/1.4905311

[18]

Cui H, Liu X, Liu F. Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact[J]. Appl Phys Lett, 2014, 104(4): 041115. doi: 10.1063/1.4863951

[19]

Kim J, Hiroi H, Todorov T K. High efficiency Cu2ZnSn (S, Se)(4) solar cells by applying a double In2S3/CdS emitter[J]. Adv Mater, 2014, 26(44): 7427. doi: 10.1002/adma.201402373

[20]

Gunawan O, Todorov T K, Mitzi D B. Loss mechanisms in hydrazine-processed Cu2ZnSn (S, Se)(4) solar cells[J]. Appl Phys Lett, 2010, 97(23): 233506. doi: 10.1063/1.3522884

[21]

Etgar L, Gao P, Xue Z. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J Am Chem Soc, 2012, 134(42): 17396. doi: 10.1021/ja307789s

[22]

Chung I, Lee B, He J. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485(7399): 486. doi: 10.1038/nature11067

[23]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[24]

Conings B, Baeten L, De Dobbelaere C. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach[J]. Adv Mater, 2014, 26(13): 2041. doi: 10.1002/adma.201304803

[25]

Baikie T, Fang Y, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[26]

Xing G, Mathews N, Lim S S. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing[J]. Nat Mater, 2014, 13(5): 476. doi: 10.1038/nmat3911

[27]

Zhou Y, Zhu K. Perovskite solar cells shine in the "valley of the sun"[J]. ACS Energy Lett, 2016, 1(1): 64. doi: 10.1021/acsenergylett.6b00069

[28]

Xing G, Mathews N, Sun S. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344. doi: 10.1126/science.1243167

[29]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342: 341. doi: 10.1126/science.1243982

[30]

Kim H S, Lee J W, Yantara N. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Lett, 2013, 13(6): 2412. doi: 10.1021/nl400286w

[31]

Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nat Photonics, 2014, 8(7): 506. doi: 10.1038/nphoton.2014.134

[32]

Heo J H, Song D H, Han H J. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J]. Adv Mater, 2015, 27(22): 3424. doi: 10.1002/adma.v27.22

[33]

Dong Q, Fang Y, Shao Y. Electron-hole diffusion lengths >175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967. doi: 10.1126/science.aaa5760

[34]

Kim H S, Im S H, Park N G. Organolead halide perovskite:new horizons in solar cell research[J]. J Phys Chem C, 2014, 118(11): 5615. doi: 10.1021/jp409025w

[35]

Heo J H, Han H J, Kim D. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy Environ Sci, 2015, 8(5): 1602. doi: 10.1039/C5EE00120J

[36]

Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Appl Phys Lett, 2014, 104(6): 063903. doi: 10.1063/1.4864778

[37]

Yin W J, Shi T T, Yan Y F. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Adv Mater, 2014, 26(27): 4653. doi: 10.1002/adma.v26.27

[38]

Du M H. Efficient carrier transport in halide perovskites:theoretical perspectives[J]. J Mater Chem A, 2014, 2(24): 9091. doi: 10.1039/c4ta01198h

[39]

Walsh A, Scanlon D O, Chen S. Self-regulation mechanism for charged point defects in hybrid halide perovskites[J]. Angewandte Chemie-International Edition, 2015, 54(6): 1791. doi: 10.1002/anie.201409740

[40]

Agiorgousis M L, Sun Y Y, Zeng H. Strong covalencyinduced recombination centers in perovskite solar cell material CH3NH3PbI3[J]. J Am Chem Soc, 2014, 136(41): 14570. doi: 10.1021/ja5079305

[41]

Buin A, Pietsch P, Xu J. Materials processing routes to trapfree halide perovskites[J]. Nano Lett, 2014, 14(11): 6281. doi: 10.1021/nl502612m

[42]

Du M H. Density functional calculations of native defects in CH3NH3PbI3:effects of spin-orbit coupling and self-interaction error[J]. J Phys Chem Lett, 2015, 6(8): 1461. doi: 10.1021/acs.jpclett.5b00199

[43]

Wang Q, Shao Y, Xie H. Qualifying composition dependent p and n self-doping in CH3NH3PbI3[J]. Appl Phys Lett, 2014, 105(16): 163508. doi: 10.1063/1.4899051

[44]

Chen S, Gong X G, Walsh A. Crystal and electronic band structure of Cu2ZnSnX4(X=S and Se) photovoltaic absorbers: first-principles insights[J]. Appl Phys Lett, 2009, 94(4): 041903. doi: 10.1063/1.3074499

[45]

Ming W, Chen S, Du M H. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH3NH3PbI3. J Mater Chem A, 2016

[46]

Kim J, Lee S H, Lee J H. The role of intrinsic defects in methylammonium lead iIodide perovskite[J]. J Phys Chem Lett, 2014, 5(8): 1312. doi: 10.1021/jz500370k

[47]

Samiee M, Konduri S, Ganapathy B. Defect density and dielectricconstantinperovskitesolarcells[J]. ApplPhysLett, 2014, 105(15): 153502.

[48]

Jiang M L, Lan F, Zhao B X. Observation of lower defect density in CH3NH3Pb (I, Cl)(3) solar cells by admittance spectroscopy[J]. Appl Phys Lett, 2016, 108(24): 243501. doi: 10.1063/1.4953834

[49]

Duan H S, Zhou H, Chen Q. The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics[J]. Phys Chem Chem Phys, 2015, 17(1): 112. doi: 10.1039/C4CP04479G

[50]

Yang J H, Yin W J, Park J S. Self-regulation of charged defect compensation and formation energy pinning in semiconductors[J]. Sci Rep, 2015, 5: 16977. doi: 10.1038/srep16977

[51]

Edri E, Kirmayer S, Mukhopadhyay S. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells[J]. Nat Commun, 2014, 5: 3461.

[52]

Wehrenfennig C, Liu M, Snaith H J. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx[J]. Energy Environ Sci, 2014, 7(7): 2269. doi: 10.1039/c4ee01358a

[53]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg Chem, 2013, 52(15): 9019. doi: 10.1021/ic401215x

[54]

Heo J H, Song D H, Im S H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process[J]. Adv Mater, 2014, 26(48): 8179. doi: 10.1002/adma.201403140

[55]

Shi D, Adinolfi V, Comin R. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519. doi: 10.1126/science.aaa2725

[56]

Takahashi Y, Obara R, Lin Z Z. Charge-transport in tiniodide perovskite CH3NH3SnI3:origin of high conductivity[J]. Dalton Trans, 2011, 40(20): 5563. doi: 10.1039/c0dt01601b

[57]

Parrott E S, Milot R L, Stergiopoulos T. Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite[J]. J Phys Chem Lett, 2016, 7(7): 1321. doi: 10.1021/acs.jpclett.6b00322

[58]

Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. J Am Chem Soc, 2015, 137(4): 1530. doi: 10.1021/ja511132a

[59]

Jiao Y, Ma F, Gao G. Graphene-covered perovskites:an effective strategy to enhance light absorption and resist moisture degradation[J]. RSC Adv, 2015, 5(100): 82346. doi: 10.1039/C5RA14381K

[60]

Yang J, Siempelkamp B D, Liu D. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques[J]. ACS Nano, 2015, 9(2): 1955. doi: 10.1021/nn506864k

[61]

Alberti A, Deretzis I, Pellegrino G. Similar structural dynamics for the degradation of CH3NH3PbI3 in air and in vacuum[J]. Chem Phys Chem, 2015, 16(14): 3064.

[62]

Misra R K, Aharon S, Li B. Temperature-and componentdependent degradation of perovskite photovoltaic materials under concentrated sunlight[J]. J Phys Chem Lett, 2015, 6(3): 326. doi: 10.1021/jz502642b

[63]

Han Y, Meyer S, Dkhissi Y. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity[J]. J Mater Chem A, 2015, 3(15): 8139. doi: 10.1039/C5TA00358J

[64]

Kulbak M, Gupta S, Kedem N. Cesium enhances longtermstabilityofleadbromideperovskite-basedsolarcells[J]. JPhys Chem Lett, 2016, 7(1): 167. doi: 10.1021/acs.jpclett.5b02597

[65]

Zhang Y Y, Chen S, Xu P, et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. arXiv:1506.01301v1, 2015

[66]

Chung I, Song J H, Im J. CsSnI3:semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phasetransitions[J]. J Am Chem Soc, 2012, 134(20): 8579. doi: 10.1021/ja301539s

[67]

Xu P, Chen S, Xiang H J. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3[J]. Chem Mater, 2014, 26(20): 6068. doi: 10.1021/cm503122j

[68]

Chen Z, Wang J J, Ren Y. Schottky solar cells based on CsSnI3 thin-films[J]. Appl Phys Lett, 2012, 101(9): 093901. doi: 10.1063/1.4748888

[1]

Zhao J H, Wang A H, Green M A. 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells[J]. Appl Phys Lett, 1998, 73(1): 1991.

[2]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (Version 45)[J]. Prog Photovoltaics, 2015, 23(1): 1. doi: 10.1002/pip.v23.1

[3]

Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE J Photovoltaics, 2013, 3(4): 1184. doi: 10.1109/JPHOTOV.2013.2270351

[4]

Smith D D, Cousins P J, Masad A. Generation III high efficiency lower cost technology:transition to full scale manufacturing[J]. 2012 IEEE 38th Photovoltaic Specialists Conference, 2012: 001594.

[5]

Polman A, Knight M, Garnett E C. Photovoltaic materials:Present efficiencies and future challenges[J]. Science, 2016, 352(6283): 307.

[6]

Kayes B M, Hui N, Twist R. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination[J]. 201137th IEEE Photovoltaic Specialists Conferenc, 2011: 000004.

[7]

King R R, Law D C, Edmondson K M. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells[J]. Appl Phys Lett, 2007, 90(18): 183516. doi: 10.1063/1.2734507

[8]

Geisz J F, Kurtz S, Wanlass M W. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction[J]. Appl Phys Lett, 2007, 91(2): 023502. doi: 10.1063/1.2753729

[9]

Ma J, Kuciauskas D, Albin D. Dependence of the minoritycarrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations[J]. Phys Rev Lett, 2013, 111(6): 067402. doi: 10.1103/PhysRevLett.111.067402

[10]

Wei S H, Zhang S. Chemical trends of defect formation and doping limit in II-VI semiconductors:the case of CdTe[J]. Phys Rev B, 2002, 66: 155211. doi: 10.1103/PhysRevB.66.155211

[11]

Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid-processed absorber[J]. Adv Mater, 2010, 22(20): E156. doi: 10.1002/adma.200904155

[12]

Wei W, Winkler M T, Gunawan O. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Adv Energy Mater, 2014, 4(7): 1301465. doi: 10.1002/aenm.201301465

[13]

Zhang S B, Wei S H, Zunger A. Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Phys Rev B, 1998, 57(16): 9642. doi: 10.1103/PhysRevB.57.9642

[14]

Huang B, Chen S, Deng H X. Origin of reduced efficiency in Cu (In, Ga) Se2 solar cells with high Ga concentration:Alloy solubility versus intrinsic defects[J]. IEEE J Photovoltaics, 2014, 4(1): 477. doi: 10.1109/JPHOTOV.2013.2285617

[15]

Tanaka K, Oonuki M, Moritake N. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing[J]. Sol Energy Mater Sol Cells, 2009, 93(5): 583. doi: 10.1016/j.solmat.2008.12.009

[16]

Weber A, Schmidt S, Abou-Ras D. Texture inheritance in thin-film growth of Cu2ZnSnS4[J]. Appl Phys Lett, 2009, 95(4): 041904. doi: 10.1063/1.3192357

[17]

Lin X, Ennaoui A, Levcenko S. Defect study of Cu2ZnSn (SxSe1-x)(4) thin film absorbers using photoluminescence and modulated surface photovoltage spectroscopy[J]. Appl Phys Lett, 2015, 106(1): 013903. doi: 10.1063/1.4905311

[18]

Cui H, Liu X, Liu F. Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact[J]. Appl Phys Lett, 2014, 104(4): 041115. doi: 10.1063/1.4863951

[19]

Kim J, Hiroi H, Todorov T K. High efficiency Cu2ZnSn (S, Se)(4) solar cells by applying a double In2S3/CdS emitter[J]. Adv Mater, 2014, 26(44): 7427. doi: 10.1002/adma.201402373

[20]

Gunawan O, Todorov T K, Mitzi D B. Loss mechanisms in hydrazine-processed Cu2ZnSn (S, Se)(4) solar cells[J]. Appl Phys Lett, 2010, 97(23): 233506. doi: 10.1063/1.3522884

[21]

Etgar L, Gao P, Xue Z. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J Am Chem Soc, 2012, 134(42): 17396. doi: 10.1021/ja307789s

[22]

Chung I, Lee B, He J. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485(7399): 486. doi: 10.1038/nature11067

[23]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[24]

Conings B, Baeten L, De Dobbelaere C. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach[J]. Adv Mater, 2014, 26(13): 2041. doi: 10.1002/adma.201304803

[25]

Baikie T, Fang Y, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[26]

Xing G, Mathews N, Lim S S. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing[J]. Nat Mater, 2014, 13(5): 476. doi: 10.1038/nmat3911

[27]

Zhou Y, Zhu K. Perovskite solar cells shine in the "valley of the sun"[J]. ACS Energy Lett, 2016, 1(1): 64. doi: 10.1021/acsenergylett.6b00069

[28]

Xing G, Mathews N, Sun S. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344. doi: 10.1126/science.1243167

[29]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342: 341. doi: 10.1126/science.1243982

[30]

Kim H S, Lee J W, Yantara N. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Lett, 2013, 13(6): 2412. doi: 10.1021/nl400286w

[31]

Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nat Photonics, 2014, 8(7): 506. doi: 10.1038/nphoton.2014.134

[32]

Heo J H, Song D H, Han H J. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J]. Adv Mater, 2015, 27(22): 3424. doi: 10.1002/adma.v27.22

[33]

Dong Q, Fang Y, Shao Y. Electron-hole diffusion lengths >175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967. doi: 10.1126/science.aaa5760

[34]

Kim H S, Im S H, Park N G. Organolead halide perovskite:new horizons in solar cell research[J]. J Phys Chem C, 2014, 118(11): 5615. doi: 10.1021/jp409025w

[35]

Heo J H, Han H J, Kim D. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy Environ Sci, 2015, 8(5): 1602. doi: 10.1039/C5EE00120J

[36]

Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Appl Phys Lett, 2014, 104(6): 063903. doi: 10.1063/1.4864778

[37]

Yin W J, Shi T T, Yan Y F. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Adv Mater, 2014, 26(27): 4653. doi: 10.1002/adma.v26.27

[38]

Du M H. Efficient carrier transport in halide perovskites:theoretical perspectives[J]. J Mater Chem A, 2014, 2(24): 9091. doi: 10.1039/c4ta01198h

[39]

Walsh A, Scanlon D O, Chen S. Self-regulation mechanism for charged point defects in hybrid halide perovskites[J]. Angewandte Chemie-International Edition, 2015, 54(6): 1791. doi: 10.1002/anie.201409740

[40]

Agiorgousis M L, Sun Y Y, Zeng H. Strong covalencyinduced recombination centers in perovskite solar cell material CH3NH3PbI3[J]. J Am Chem Soc, 2014, 136(41): 14570. doi: 10.1021/ja5079305

[41]

Buin A, Pietsch P, Xu J. Materials processing routes to trapfree halide perovskites[J]. Nano Lett, 2014, 14(11): 6281. doi: 10.1021/nl502612m

[42]

Du M H. Density functional calculations of native defects in CH3NH3PbI3:effects of spin-orbit coupling and self-interaction error[J]. J Phys Chem Lett, 2015, 6(8): 1461. doi: 10.1021/acs.jpclett.5b00199

[43]

Wang Q, Shao Y, Xie H. Qualifying composition dependent p and n self-doping in CH3NH3PbI3[J]. Appl Phys Lett, 2014, 105(16): 163508. doi: 10.1063/1.4899051

[44]

Chen S, Gong X G, Walsh A. Crystal and electronic band structure of Cu2ZnSnX4(X=S and Se) photovoltaic absorbers: first-principles insights[J]. Appl Phys Lett, 2009, 94(4): 041903. doi: 10.1063/1.3074499

[45]

Ming W, Chen S, Du M H. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH3NH3PbI3. J Mater Chem A, 2016

[46]

Kim J, Lee S H, Lee J H. The role of intrinsic defects in methylammonium lead iIodide perovskite[J]. J Phys Chem Lett, 2014, 5(8): 1312. doi: 10.1021/jz500370k

[47]

Samiee M, Konduri S, Ganapathy B. Defect density and dielectricconstantinperovskitesolarcells[J]. ApplPhysLett, 2014, 105(15): 153502.

[48]

Jiang M L, Lan F, Zhao B X. Observation of lower defect density in CH3NH3Pb (I, Cl)(3) solar cells by admittance spectroscopy[J]. Appl Phys Lett, 2016, 108(24): 243501. doi: 10.1063/1.4953834

[49]

Duan H S, Zhou H, Chen Q. The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics[J]. Phys Chem Chem Phys, 2015, 17(1): 112. doi: 10.1039/C4CP04479G

[50]

Yang J H, Yin W J, Park J S. Self-regulation of charged defect compensation and formation energy pinning in semiconductors[J]. Sci Rep, 2015, 5: 16977. doi: 10.1038/srep16977

[51]

Edri E, Kirmayer S, Mukhopadhyay S. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells[J]. Nat Commun, 2014, 5: 3461.

[52]

Wehrenfennig C, Liu M, Snaith H J. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx[J]. Energy Environ Sci, 2014, 7(7): 2269. doi: 10.1039/c4ee01358a

[53]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg Chem, 2013, 52(15): 9019. doi: 10.1021/ic401215x

[54]

Heo J H, Song D H, Im S H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process[J]. Adv Mater, 2014, 26(48): 8179. doi: 10.1002/adma.201403140

[55]

Shi D, Adinolfi V, Comin R. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519. doi: 10.1126/science.aaa2725

[56]

Takahashi Y, Obara R, Lin Z Z. Charge-transport in tiniodide perovskite CH3NH3SnI3:origin of high conductivity[J]. Dalton Trans, 2011, 40(20): 5563. doi: 10.1039/c0dt01601b

[57]

Parrott E S, Milot R L, Stergiopoulos T. Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite[J]. J Phys Chem Lett, 2016, 7(7): 1321. doi: 10.1021/acs.jpclett.6b00322

[58]

Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air[J]. J Am Chem Soc, 2015, 137(4): 1530. doi: 10.1021/ja511132a

[59]

Jiao Y, Ma F, Gao G. Graphene-covered perovskites:an effective strategy to enhance light absorption and resist moisture degradation[J]. RSC Adv, 2015, 5(100): 82346. doi: 10.1039/C5RA14381K

[60]

Yang J, Siempelkamp B D, Liu D. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques[J]. ACS Nano, 2015, 9(2): 1955. doi: 10.1021/nn506864k

[61]

Alberti A, Deretzis I, Pellegrino G. Similar structural dynamics for the degradation of CH3NH3PbI3 in air and in vacuum[J]. Chem Phys Chem, 2015, 16(14): 3064.

[62]

Misra R K, Aharon S, Li B. Temperature-and componentdependent degradation of perovskite photovoltaic materials under concentrated sunlight[J]. J Phys Chem Lett, 2015, 6(3): 326. doi: 10.1021/jz502642b

[63]

Han Y, Meyer S, Dkhissi Y. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity[J]. J Mater Chem A, 2015, 3(15): 8139. doi: 10.1039/C5TA00358J

[64]

Kulbak M, Gupta S, Kedem N. Cesium enhances longtermstabilityofleadbromideperovskite-basedsolarcells[J]. JPhys Chem Lett, 2016, 7(1): 167. doi: 10.1021/acs.jpclett.5b02597

[65]

Zhang Y Y, Chen S, Xu P, et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. arXiv:1506.01301v1, 2015

[66]

Chung I, Song J H, Im J. CsSnI3:semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phasetransitions[J]. J Am Chem Soc, 2012, 134(20): 8579. doi: 10.1021/ja301539s

[67]

Xu P, Chen S, Xiang H J. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3[J]. Chem Mater, 2014, 26(20): 6068. doi: 10.1021/cm503122j

[68]

Chen Z, Wang J J, Ren Y. Schottky solar cells based on CsSnI3 thin-films[J]. Appl Phys Lett, 2012, 101(9): 093901. doi: 10.1063/1.4748888

[1]

Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong. Applications of cesium in the perovskite solar cells. J. Semicond., 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003

[2]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[3]

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

[4]

Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002

[5]

Yamei Wu, Ruixia Yang, Hanmin Tian, Shuai Chen. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction. J. Semicond., 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[6]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[7]

Jingbi You. Preface to the Special Topic on Perovskite Solar Cells. J. Semicond., 2017, 38(1): 011001. doi: 10.1088/1674-4926/38/1/011001

[8]

Yang (Michael) Yang. Surface passivation of perovskite film for efficient solar cells. J. Semicond., 2019, 40(4): 040204. doi: 10.1088/1674-4926/40/4/040204

[9]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[10]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[11]

Zhipeng Yuan, Hongbao Cui, Xuefeng Guo. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects. J. Semicond., 2017, 38(1): 012001. doi: 10.1088/1674-4926/38/1/012001

[12]

Linwang Wang. Some recent advances in ab initio calculations of nonradiative decay rates of point defects in semiconductors. J. Semicond., 2019, 40(9): 091101. doi: 10.1088/1674-4926/40/9/091101

[13]

Lin Fan, Fengyou Wang, Junhui Liang, Xin Yao, Jia Fang, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact. J. Semicond., 2017, 38(1): 014003. doi: 10.1088/1674-4926/38/1/014003

[14]

Tianyue Wang, Jiewei Chen, Gaoxiang Wu, Dandan Song, Meicheng Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005

[15]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[16]

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, Xingwang Zhang, Jingbi You. Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping. J. Semicond., 2019, 40(10): 000000.

[17]

Lin Guijiang, Wu Jyhchiarng, Huang Meichun. Theoretical modeling of the interface recombination effect on the performance of III–V tandem solar cells. J. Semicond., 2010, 31(8): 082004. doi: 10.1088/1674-4926/31/8/082004

[18]

Jincheng Zhang, Chengwu Shi, Junjun Chen, Chao Ying, Ni Wu, Mao Wang. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J. Semicond., 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002

[19]

Nanjie Guo, Taiyang Zhang, Ge Li, Feng Xu, Xufang Qian, Yixin Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. J. Semicond., 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004

[20]

Xiaoyan Dai, Chengwu Shi, Yanru Zhang, Ni Wu. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells. J. Semicond., 2015, 36(7): 074003. doi: 10.1088/1674-4926/36/7/074003

Search

Advanced Search >>

GET CITATION

D Han, C M Dai, S Y Chen. Calculation studies on point defects in perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006.

Export: BibTex EndNote

Article Metrics

Article views: 1578 Times PDF downloads: 32 Times Cited by: 0 Times

History

Manuscript received: 23 August 2016 Manuscript revised: 26 October 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误