J. Semicond. > Volume 38 > Issue 1 > Article Number: 014001

The investigation of an amidine-based additive in the perovskite films and solar cells

Guanhaojie Zheng 1, 2, , Liang Li 2, , Ligang Wang 2, , Xingyu Gao 1, , and Huanping Zhou 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Here, we introduced acetamidine (C2H3N2H3, Aa)-based salt as an additive in the fabrication of perovskite (CH3NH3PbI3) layer for perovskite solar cells. It was found that as an amidine-based salt, this additive successfully enhanced the crystallinity of CH3NH3PbI3 and helped to form smooth and uniform films with comparable grain size and full coverage. Besides, perovskite film with additive showed a much longer carrier lifetime and an obviously enhanced open-circuit voltage in the corresponding devices, indicating that the acetamidine-based salt can reduce the carrier recombination in both the film and device. We further demonstrate a promising perovskite device based on acetamidine salt by using a configuration of ITO/TiO2/Perovskite/Spiro-OMeTAD/Au under < 150℃ fabrication condition. A power conversion efficiency (PCE) of 16.54% was achieved, which is much higher than the control device without acetamidine salt. These results present a simple method for film quality optimization of perovskite to further improve photovoltaic performances of perovskite solar cells, which may also benefit the exploration of A cation in perovskite materials.

Key words: acetamidinecrystallinityopen-circuit voltageperovskitesolar cell

Abstract: Here, we introduced acetamidine (C2H3N2H3, Aa)-based salt as an additive in the fabrication of perovskite (CH3NH3PbI3) layer for perovskite solar cells. It was found that as an amidine-based salt, this additive successfully enhanced the crystallinity of CH3NH3PbI3 and helped to form smooth and uniform films with comparable grain size and full coverage. Besides, perovskite film with additive showed a much longer carrier lifetime and an obviously enhanced open-circuit voltage in the corresponding devices, indicating that the acetamidine-based salt can reduce the carrier recombination in both the film and device. We further demonstrate a promising perovskite device based on acetamidine salt by using a configuration of ITO/TiO2/Perovskite/Spiro-OMeTAD/Au under < 150℃ fabrication condition. A power conversion efficiency (PCE) of 16.54% was achieved, which is much higher than the control device without acetamidine salt. These results present a simple method for film quality optimization of perovskite to further improve photovoltaic performances of perovskite solar cells, which may also benefit the exploration of A cation in perovskite materials.

Key words: acetamidinecrystallinityopen-circuit voltageperovskitesolar cell



References:

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[2]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[3]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[4]

Liu M, Johnston M B, Snaith , H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395. doi: 10.1038/nature12509

[5]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature Nanotech, 2015, 517: 5.

[6]

Stamplecoskie K G, Manser J S, Kamat P V. Dual nature of the excited state in organic-inorganic lead halide perovskites[J]. Energy Environ Sci, 2015, 8(1): 208. doi: 10.1039/C4EE02988G

[7]

Chiang C H, Wu C G. Bulk heterojunction perovskite-PCBM solar cells with high fill factor[J]. Nature Photon, 2016, 10: 196. doi: 10.1038/nphoton.2016.3

[8]

Li Y, Meng L, Yang Y M. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nat Commun, 2016, 7: 10214. doi: 10.1038/ncomms10214

[9]

Qin P, Paulose M, Dar M I. Stable and efficient perovskite solar cells based on titania nanotube arrays[J]. Small, 2015, 11(41): 5533. doi: 10.1002/smll.v11.41

[10]

Fan R, Huang Y, Wang L. The progress of interface design in perovskite-based solar cells[J]. Adv Energy Mater, 2016, 6: 1600460. doi: 10.1002/aenm.v6.17

[11]

Zhou H, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542. doi: 10.1126/science.1254050

[12]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[13]

Eperon G E, Stranks S D, Menelaou C. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7(3): 982. doi: 10.1039/c3ee43822h

[14]

Giorgi G, Fujisawa J, Segawa H. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite:a density functional analysis[J]. J Phys Chem Lett, 2013, 4(24): 4213. doi: 10.1021/jz4023865

[15]

Heo J H, Han H J, Kim D. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy Environ Sci, 2015, 8(5): 1602. doi: 10.1039/C5EE00120J

[16]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316. doi: 10.1038/nature12340

[17]

Xiao Z, Bi C, Shao Y. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy Environ Sci, 2014, 7(8): 2619. doi: 10.1039/C4EE01138D

[18]

Jeon N J, Noh J H, Kim Y C. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells[J]. Nat Mater, 2014, 13(9): 897. doi: 10.1038/nmat4014

[19]

Ahn N, Son D Y, Jang I H. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide[J]. J Am Chem Soc, 2015, 137(27): 8696. doi: 10.1021/jacs.5b04930

[20]

Sharenko A, Toney M F. Relationships between lead halide perovskite thin-film fabrication, morphology, and performance in solar cells[J]. J Am Chem Soc, 2015, 138(2): 463.

[21]

Saliba M, Matsui T, Seo J Y. Cesium-containing triple cation perovskite solar cells:improved stability, reproducibility and high efficiency[J]. Energy Environ Sci, 2016, 9(6): 1989. doi: 10.1039/C5EE03874J

[22]

Boopathi K M, Mohan R, Huang T Y. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives[J]. J Mater Chem A, 2016, 4(5): 1591. doi: 10.1039/C5TA10288J

[23]

McMeekin D P, Sadoughi G, Rehman W. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells[J]. Science, 2016, 351(6269): 151. doi: 10.1126/science.aad5845

[24]

Zuo C, Ding L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive[J]. Nanoscale, 2014, 6(17): 9935. doi: 10.1039/C4NR02425G

[25]

Wang F, Yu H, Xu H. HPbI3:a new precursor compound for highly efficient solution-processed perovskite solar cells[J]. Adv Funct Mater, 2015, 25(7): 1120. doi: 10.1002/adfm.v25.7

[26]

Wang Z K, Li M, Yang Y G. High efficiency Pb-In binary metal perovskite solar cells[J]. Adv Mater, 2016, 28(31): 6695. doi: 10.1002/adma.201600626

[27]

Li X, Dar M I, Yi C. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides[J]. Nat Chem, 2015, 7(9): 703. doi: 10.1038/nchem.2324

[28]

Liang P W, Liao C Y, Chueh C C. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Adv Mater, 2014, 26(22): 3748. doi: 10.1002/adma.v26.22

[29]

Yang S, Wang Y, Liu P. Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nat Energy, 2016, 1: 15016. doi: 10.1038/nenergy.2015.16

[30]

De Marco N, Zhou H, Chen Q. Guanidinium:a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells[J]. Nano Lett, 2016, 16(2): 1009. doi: 10.1021/acs.nanolett.5b04060

[31]

Son D Y, Lee J W, Choi Y J. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells[J]. Nat Energy, 2016, 1(7): 16081. doi: 10.1038/nenergy.2016.81

[32]

Yang L, Wang J, Leung W W. Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells[J]. ACS Appl Mater Interfaces, 2015, 7(27): 14614. doi: 10.1021/acsami.5b01049

[33]

Bryant D, Aristidou N, Pont S. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy Environ Sci, 2016, 9(5): 1655. doi: 10.1039/C6EE00409A

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[2]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[3]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[4]

Liu M, Johnston M B, Snaith , H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395. doi: 10.1038/nature12509

[5]

Jeon N J, Noh J H, Yang W S. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature Nanotech, 2015, 517: 5.

[6]

Stamplecoskie K G, Manser J S, Kamat P V. Dual nature of the excited state in organic-inorganic lead halide perovskites[J]. Energy Environ Sci, 2015, 8(1): 208. doi: 10.1039/C4EE02988G

[7]

Chiang C H, Wu C G. Bulk heterojunction perovskite-PCBM solar cells with high fill factor[J]. Nature Photon, 2016, 10: 196. doi: 10.1038/nphoton.2016.3

[8]

Li Y, Meng L, Yang Y M. High-efficiency robust perovskite solar cells on ultrathin flexible substrates[J]. Nat Commun, 2016, 7: 10214. doi: 10.1038/ncomms10214

[9]

Qin P, Paulose M, Dar M I. Stable and efficient perovskite solar cells based on titania nanotube arrays[J]. Small, 2015, 11(41): 5533. doi: 10.1002/smll.v11.41

[10]

Fan R, Huang Y, Wang L. The progress of interface design in perovskite-based solar cells[J]. Adv Energy Mater, 2016, 6: 1600460. doi: 10.1002/aenm.v6.17

[11]

Zhou H, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542. doi: 10.1126/science.1254050

[12]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[13]

Eperon G E, Stranks S D, Menelaou C. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ Sci, 2014, 7(3): 982. doi: 10.1039/c3ee43822h

[14]

Giorgi G, Fujisawa J, Segawa H. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite:a density functional analysis[J]. J Phys Chem Lett, 2013, 4(24): 4213. doi: 10.1021/jz4023865

[15]

Heo J H, Han H J, Kim D. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy Environ Sci, 2015, 8(5): 1602. doi: 10.1039/C5EE00120J

[16]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316. doi: 10.1038/nature12340

[17]

Xiao Z, Bi C, Shao Y. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy Environ Sci, 2014, 7(8): 2619. doi: 10.1039/C4EE01138D

[18]

Jeon N J, Noh J H, Kim Y C. Solvent engineering for highperformance inorganic-organic hybrid perovskite solar cells[J]. Nat Mater, 2014, 13(9): 897. doi: 10.1038/nmat4014

[19]

Ahn N, Son D Y, Jang I H. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide[J]. J Am Chem Soc, 2015, 137(27): 8696. doi: 10.1021/jacs.5b04930

[20]

Sharenko A, Toney M F. Relationships between lead halide perovskite thin-film fabrication, morphology, and performance in solar cells[J]. J Am Chem Soc, 2015, 138(2): 463.

[21]

Saliba M, Matsui T, Seo J Y. Cesium-containing triple cation perovskite solar cells:improved stability, reproducibility and high efficiency[J]. Energy Environ Sci, 2016, 9(6): 1989. doi: 10.1039/C5EE03874J

[22]

Boopathi K M, Mohan R, Huang T Y. Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives[J]. J Mater Chem A, 2016, 4(5): 1591. doi: 10.1039/C5TA10288J

[23]

McMeekin D P, Sadoughi G, Rehman W. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells[J]. Science, 2016, 351(6269): 151. doi: 10.1126/science.aad5845

[24]

Zuo C, Ding L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive[J]. Nanoscale, 2014, 6(17): 9935. doi: 10.1039/C4NR02425G

[25]

Wang F, Yu H, Xu H. HPbI3:a new precursor compound for highly efficient solution-processed perovskite solar cells[J]. Adv Funct Mater, 2015, 25(7): 1120. doi: 10.1002/adfm.v25.7

[26]

Wang Z K, Li M, Yang Y G. High efficiency Pb-In binary metal perovskite solar cells[J]. Adv Mater, 2016, 28(31): 6695. doi: 10.1002/adma.201600626

[27]

Li X, Dar M I, Yi C. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides[J]. Nat Chem, 2015, 7(9): 703. doi: 10.1038/nchem.2324

[28]

Liang P W, Liao C Y, Chueh C C. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Adv Mater, 2014, 26(22): 3748. doi: 10.1002/adma.v26.22

[29]

Yang S, Wang Y, Liu P. Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nat Energy, 2016, 1: 15016. doi: 10.1038/nenergy.2015.16

[30]

De Marco N, Zhou H, Chen Q. Guanidinium:a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells[J]. Nano Lett, 2016, 16(2): 1009. doi: 10.1021/acs.nanolett.5b04060

[31]

Son D Y, Lee J W, Choi Y J. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells[J]. Nat Energy, 2016, 1(7): 16081. doi: 10.1038/nenergy.2016.81

[32]

Yang L, Wang J, Leung W W. Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells[J]. ACS Appl Mater Interfaces, 2015, 7(27): 14614. doi: 10.1021/acsami.5b01049

[33]

Bryant D, Aristidou N, Pont S. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy Environ Sci, 2016, 9(5): 1655. doi: 10.1039/C6EE00409A

[1]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[2]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[3]

Taofei Zhou, Kanglin Xiong, Min Zhang, Lei Liu, Feifei Tian, Zhiqiang Zhang, Hong Gu, Jun Huang, Jianfeng Wang, Jianrong Dong, Ke Xu. Leakage of photocurrent: an alternative view on I-V curves of solar cells. J. Semicond., 2015, 36(6): 062002. doi: 10.1088/1674-4926/36/6/062002

[4]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[5]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[6]

Haixiao Wang, Xinhe Zheng, Xinyuan Gan, Naiming Wang, Hui Yang. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell. J. Semicond., 2016, 37(1): 014004. doi: 10.1088/1674-4926/37/1/014004

[7]

Zhang Lucheng, Shen Hui. Novel approach for characterizing the specific shunt resistance caused by the penetration of the front contact through the p–n junction in solar cell. J. Semicond., 2009, 30(7): 074007. doi: 10.1088/1674-4926/30/7/074007

[8]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[9]

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004

[10]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[11]

Utsa Das, Partha P. Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis. J. Semicond., 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

[12]

Pan Dai, Shulong Lu, Lian Ji, Wei He, Lifeng Bian, Hui Yang, M. Arimochi, H. Yoshida, S. Uchida, M. Ikeda. A GaAs/GaInP dual junction solar cell grown by molecular beam epitaxy. J. Semicond., 2013, 34(10): 104006. doi: 10.1088/1674-4926/34/10/104006

[13]

Duofa Wang, Haizheng Tao, Xiujian Zhao, Meiyan Ji, Tianjin Zhang. Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification. J. Semicond., 2015, 36(2): 023006. doi: 10.1088/1674-4926/36/2/023006

[14]

Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun, Kaijian Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells. J. Semicond., 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010

[15]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[16]

Yurun Sun, Kuilong Li, Xulu Zeng. Influence of GaInP ordering on the performance of GaInP solar cells. J. Semicond., 2016, 37(7): 073001. doi: 10.1088/1674-4926/37/7/073001

[17]

Fucheng Wan, Fuling Tang, Hongtao Xue, Wenjiang Lu, Yudong Feng, Zhiyuan Rui. Effects of defect states on the performance of CuInGaSe2 solar cells. J. Semicond., 2014, 35(2): 024011. doi: 10.1088/1674-4926/35/2/024011

[18]

Chen Xinliang, Xu Buheng, Xue Junming, Zhao Ying, Zhang Xiaodan, Geng Xinhua. ZnO Thin Film Growth by Metal Organic Chemical Vapor Deposition and Its Back Contact Application in Solar Cells. J. Semicond., 2005, 26(12): 2363.

[19]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[20]

Zongcun Liang, Dianlei Wang, Yanbin Zhu. Effects of substrate characteristics on the passivation performance of ALD-Al2O3 thin film for high-efficiency solar cells. J. Semicond., 2014, 35(5): 054002. doi: 10.1088/1674-4926/35/5/054002

Search

Advanced Search >>

GET CITATION

G H J Zheng, L Li, L G Wang, X Y Gao, H P Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells[J]. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001.

Export: BibTex EndNote

Article Metrics

Article views: 932 Times PDF downloads: 20 Times Cited by: 0 Times

History

Manuscript received: 01 August 2016 Manuscript revised: 26 September 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误