J. Semicond. > Volume 38 > Issue 1 > Article Number: 014003

Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact

Lin Fan 1, 2, , Fengyou Wang 1, 2, , Junhui Liang 1, 2, , Xin Yao 1, 2, , , Jia Fang 1, 2, , Dekun Zhang 1, 2, , Changchun Wei 1, 2, , Ying Zhao 1, 2, and Xiaodan Zhang 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device.

Key words: lanar perovskite top cellsilicon heterojunction bottom cellfour-terminal tandemtransparent ultrathin gold electrode

Abstract: A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device.

Key words: lanar perovskite top cellsilicon heterojunction bottom cellfour-terminal tandemtransparent ultrathin gold electrode



References:

[1]

Gu J H, Si J L, Wang J X. Indium-tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications[J]. Chin Phys B, 2015, 24: 117703. doi: 10.1088/1674-1056/24/11/117703

[2]

Gharghi M, Fathi E, Kante B. Heterojunction silicon microwire solar cells[J]. Nano Lett, 2012, 12: 6278. doi: 10.1021/nl3033813

[3]

Teplin C W, Lee B G, Fanning T R. Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells[J]. Energy Environ Sci, 2012, 5: 8193. doi: 10.1039/c2ee21936k

[4]

Hsiao J C, Chen C H, Lin C C. n C H, Lin C C, et al. Effect of hydrogen dilution on the intrinsic a-Si:H film of the heterojunction silicon-based solar cell[J]. J Electrochem Soc, 2011, 158: H876. doi: 10.1149/1.3607981

[5]

Zhang Q, Zhu M, Liu F. The optimization of interfacial properties of nc-Si:H/c-Si solar cells in hot-wire chemical vapor deposition process[J]. J Mater Sci, 2007, 18: 33.

[6]

Kinoshita T, Fujishima D, Yano A. The approaches for high efficiency HIT solar cell with very thin (<100 nm) silicon wafer over 23%[J]. 26th EUPVSC Proceedings, 2011: 871.

[7]

Masuko K, Shigematsu M, Hashiguchi T. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE J Photovoltaics, 2014, 4: 1433. doi: 10.1109/JPHOTOV.2014.2352151

[8]

Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE J Photovoltaics, 2013, 4: 1184.

[9]

Seo J H, Kim D H, Kwon S H. High efficiency inorganic/organic hybrid tandem solar cells[J]. Adv Mater, 2012, 24: 4523. doi: 10.1002/adma.v24.33

[10]

Barber G D, Hoertz P G, Lee S H A. Utilization of direct and diffuse sunlight in a dye-sensitized solar cell-silicon photovoltaic hybrid concentrator system[J]. J Phys Chem Lett, 2011, 2: 581. doi: 10.1021/jz200112m

[11]

Kitazawa N, Watanabe Y, Nakamura Y. Optical properties of MAPbX3 and their mixed-halide crystals[J]. J Mater Sci, 2002, 37: 3583.

[12]

Green M A, Ho-Baillie A, Snaith H. The emergence of perovskite solar cells[J]. J Nat Photon, 2014, 8: 506. doi: 10.1038/nphoton.2014.134

[13]

Service R F. Turning up the light[J]. Science, 2013, 342: 794. doi: 10.1126/science.342.6160.794

[14]

Service R F. Perovskite solar cells keep on surging[J]. Science, 2014, 344: 458. doi: 10.1126/science.344.6183.458

[15]

McGehee M. Optimizing perovskite semiconductors for tandem solar cells. MRS Spring Meeting, San Francisco CA USA, 2014

[16]

Löper P, Niesen B, Moon S. Organic-inorganic halide perovskites:perspectives for silicon-based tandem solar cells[J]. IEEE J Photovoltaics, 2014, 4: 1545. doi: 10.1109/JPHOTOV.2014.2355421

[17]

Löper P, Moon S J, de Nicolas S M. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells[J]. Phys Chem Chem Phys, 2014, 17: 1619.

[18]

Burschka J, Pellet , Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316. doi: 10.1038/nature12340

[19]

Kim H S, Lee J W, Yantara N. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Lett, 2013, 13: 2412. doi: 10.1021/nl400286w

[20]

Bi D, Moon S J, Hagmann L. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3/for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. RSC Adv, 2013, 3: 18762. doi: 10.1039/c3ra43228a

[21]

Docampo P, Hanusch F C, Stranks S D. Solution depositionconversion for planar heterojunction mixed halide perovskite solar cells[J]. Adv Energy Mater, 2014, 4: 1400355. doi: 10.1002/aenm.201400355

[22]

Conings B, Baeten L, Dobbelaere C D. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach[J]. Adv Mater, 2014, 26: 2041. doi: 10.1002/adma.201304803

[23]

Kim H S, Lee C R, Im J H. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[24]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316. doi: 10.1038/nature12340

[25]

Tan H, Santbergen R, Smets A H. Light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles[J]. Nano Lett, 2012, 12: 4070. doi: 10.1021/nl301521z

[26]

Hagemann H J, Gudat W, Kunz C. Optical constants from the far infrared to the x-ray region:Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3[J]. J Opt Soc Am, 1975, 65: 742. doi: 10.1364/JOSA.65.000742

[27]

Ke W, Fang G, Wang J. Perovskite solar cell with an efficient TiO2 compact film[J]. ACS Appl Mater Interfaces, 2014, 6: 15959. doi: 10.1021/am503728d

[28]

Ding Y, Yao X, Zhang X. Surfactant enhanced surface coverage of CH3NH3PbI3-xClx perovskite for highly efficient mesoscopic solar cells[J]. J Power Sources, 2014, 272: 351. doi: 10.1016/j.jpowsour.2014.08.095

[1]

Gu J H, Si J L, Wang J X. Indium-tin oxide films obtained by DC magnetron sputtering for improved Si heterojunction solar cell applications[J]. Chin Phys B, 2015, 24: 117703. doi: 10.1088/1674-1056/24/11/117703

[2]

Gharghi M, Fathi E, Kante B. Heterojunction silicon microwire solar cells[J]. Nano Lett, 2012, 12: 6278. doi: 10.1021/nl3033813

[3]

Teplin C W, Lee B G, Fanning T R. Pyramidal light trapping and hydrogen passivation for high-efficiency heteroepitaxial (100) crystal silicon solar cells[J]. Energy Environ Sci, 2012, 5: 8193. doi: 10.1039/c2ee21936k

[4]

Hsiao J C, Chen C H, Lin C C. n C H, Lin C C, et al. Effect of hydrogen dilution on the intrinsic a-Si:H film of the heterojunction silicon-based solar cell[J]. J Electrochem Soc, 2011, 158: H876. doi: 10.1149/1.3607981

[5]

Zhang Q, Zhu M, Liu F. The optimization of interfacial properties of nc-Si:H/c-Si solar cells in hot-wire chemical vapor deposition process[J]. J Mater Sci, 2007, 18: 33.

[6]

Kinoshita T, Fujishima D, Yano A. The approaches for high efficiency HIT solar cell with very thin (<100 nm) silicon wafer over 23%[J]. 26th EUPVSC Proceedings, 2011: 871.

[7]

Masuko K, Shigematsu M, Hashiguchi T. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE J Photovoltaics, 2014, 4: 1433. doi: 10.1109/JPHOTOV.2014.2352151

[8]

Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE J Photovoltaics, 2013, 4: 1184.

[9]

Seo J H, Kim D H, Kwon S H. High efficiency inorganic/organic hybrid tandem solar cells[J]. Adv Mater, 2012, 24: 4523. doi: 10.1002/adma.v24.33

[10]

Barber G D, Hoertz P G, Lee S H A. Utilization of direct and diffuse sunlight in a dye-sensitized solar cell-silicon photovoltaic hybrid concentrator system[J]. J Phys Chem Lett, 2011, 2: 581. doi: 10.1021/jz200112m

[11]

Kitazawa N, Watanabe Y, Nakamura Y. Optical properties of MAPbX3 and their mixed-halide crystals[J]. J Mater Sci, 2002, 37: 3583.

[12]

Green M A, Ho-Baillie A, Snaith H. The emergence of perovskite solar cells[J]. J Nat Photon, 2014, 8: 506. doi: 10.1038/nphoton.2014.134

[13]

Service R F. Turning up the light[J]. Science, 2013, 342: 794. doi: 10.1126/science.342.6160.794

[14]

Service R F. Perovskite solar cells keep on surging[J]. Science, 2014, 344: 458. doi: 10.1126/science.344.6183.458

[15]

McGehee M. Optimizing perovskite semiconductors for tandem solar cells. MRS Spring Meeting, San Francisco CA USA, 2014

[16]

Löper P, Niesen B, Moon S. Organic-inorganic halide perovskites:perspectives for silicon-based tandem solar cells[J]. IEEE J Photovoltaics, 2014, 4: 1545. doi: 10.1109/JPHOTOV.2014.2355421

[17]

Löper P, Moon S J, de Nicolas S M. Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells[J]. Phys Chem Chem Phys, 2014, 17: 1619.

[18]

Burschka J, Pellet , Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316. doi: 10.1038/nature12340

[19]

Kim H S, Lee J W, Yantara N. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer[J]. Nano Lett, 2013, 13: 2412. doi: 10.1021/nl400286w

[20]

Bi D, Moon S J, Hagmann L. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3/for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. RSC Adv, 2013, 3: 18762. doi: 10.1039/c3ra43228a

[21]

Docampo P, Hanusch F C, Stranks S D. Solution depositionconversion for planar heterojunction mixed halide perovskite solar cells[J]. Adv Energy Mater, 2014, 4: 1400355. doi: 10.1002/aenm.201400355

[22]

Conings B, Baeten L, Dobbelaere C D. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach[J]. Adv Mater, 2014, 26: 2041. doi: 10.1002/adma.201304803

[23]

Kim H S, Lee C R, Im J H. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[24]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499: 316. doi: 10.1038/nature12340

[25]

Tan H, Santbergen R, Smets A H. Light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles[J]. Nano Lett, 2012, 12: 4070. doi: 10.1021/nl301521z

[26]

Hagemann H J, Gudat W, Kunz C. Optical constants from the far infrared to the x-ray region:Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3[J]. J Opt Soc Am, 1975, 65: 742. doi: 10.1364/JOSA.65.000742

[27]

Ke W, Fang G, Wang J. Perovskite solar cell with an efficient TiO2 compact film[J]. ACS Appl Mater Interfaces, 2014, 6: 15959. doi: 10.1021/am503728d

[28]

Ding Y, Yao X, Zhang X. Surfactant enhanced surface coverage of CH3NH3PbI3-xClx perovskite for highly efficient mesoscopic solar cells[J]. J Power Sources, 2014, 272: 351. doi: 10.1016/j.jpowsour.2014.08.095

[1]

Han Xiaoyan, Li Guijun, Hou Guofu, Zhang Xiaodan, Zhang Dekun, Chen Xinliang, Wei Changchun, Sun Jian, Xue Junming, Zhang Jianjun, Zhao Ying, Geng Xinhua. Effect of n Doped Layers in an Amorphous Silicon Top Solar Cell on the Performance of "Micromorph" Tandem Solar Cells. J. Semicond., 2008, 29(8): 1548.

[2]

Wang Liangxing, Tu Jielei, Zhang Zhongwei, Chi Weiying, Peng Dongsheng, Chen Chaoqi, Chen Mingbo. High Efficiency Ge Bottom Cell for GaInP2/GaAs/Ge Three-Junction Tandem Solar Cell. J. Semicond., 2005, 26(S1): 196.

[3]

S.R. Routray, T.R. Lenka. Effect of metal-fingers/doped-ZnO transparent electrode on performance of GaN/InGaN solar cell. J. Semicond., 2017, 38(9): 092001. doi: 10.1088/1674-4926/38/9/092001

[4]

Kaikai Wang. Quantum pump effect in a four-terminal mesoscopic structure. J. Semicond., 2015, 36(2): 022002. doi: 10.1088/1674-4926/36/2/022002

[5]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[6]

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

[7]

Shi Mingji, Wang Zhanguo, Liu Shiyong, Peng Wenbo, Xiao Haibo, Zhang Changsha, Zeng Xiangbo. Boron-doped silicon film as a recombination layer in the tunnel junction of a tandem solar cell. J. Semicond., 2009, 30(6): 063001. doi: 10.1088/1674-4926/30/6/063001

[8]

Zhang Xin’an, Zhang Jingwen, Zhang Weifeng, Wang Dong, Bi Zhen, Bian Xuming, Hou Xun. Fabrication of Bottom-Gate and Top-Gate Transparent ZnO Thin Film Transistors. J. Semicond., 2008, 29(5): 859.

[9]

Lü Siyu, Qu Xiaosheng. AlGaAs/GaAs tunnel junctions in a 4-J tandem solar cell. J. Semicond., 2011, 32(11): 112003. doi: 10.1088/1674-4926/32/11/112003

[10]

Zhang Han, Chen Nuofu, Wang Yu, Yin Zhigang, Zhang Xingwang, Shi Huiwei, Wang Yanshuo, Huang Tianmao. Design and optimization of a monolithic GaInP/GaInAs tandem solar cell. J. Semicond., 2010, 31(8): 084009. doi: 10.1088/1674-4926/31/8/084009

[11]

Cui Min, Chen Nuofu, Yang Xiaoli, Zhang Han. Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell. J. Semicond., 2012, 33(2): 024006. doi: 10.1088/1674-4926/33/2/024006

[12]

Yue Huihui, Jia Rui, Chen Chen, Ding Wuchang, Wu Deqi, Liu Xinyu. Antireflection properties and solar cell application of silicon nanoscructures. J. Semicond., 2011, 32(8): 084005. doi: 10.1088/1674-4926/32/8/084005

[13]

Shaoying Ke, Chong Wang, Tao Pan, Jie Yang, Yu Yang. Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell. J. Semicond., 2014, 35(3): 034013. doi: 10.1088/1674-4926/35/3/034013

[14]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[15]

Kewei Cao, Tong Liu, Jingming Liu, Hui Xie, Dongyan Tao, Youwen Zhao, Zhiyuan Dong, Feng Hui. Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell. J. Semicond., 2016, 37(6): 063002. doi: 10.1088/1674-4926/37/6/063002

[16]

Haixiao Wang, Xinhe Zheng, Xinyuan Gan, Naiming Wang, Hui Yang. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell. J. Semicond., 2016, 37(1): 014004. doi: 10.1088/1674-4926/37/1/014004

[17]

Lin Liu, Suge Yue, Shijin Lu. A four-interleaving HBD SRAM cell based on dual DICE for multiple node collection mitigation. J. Semicond., 2015, 36(11): 115007. doi: 10.1088/1674-4926/36/11/115007

[18]

Yupeng Xing, Peide Han, Yujie Fan, Shuai Wang, Peng Liang, Zhou Ye, Shaoxu Hu, Xinyi Li, Shishu Lou, Chunhua Zhao, Yanhong Mi. Optimization of the emitter region and the metal grid of a concentrator silicon solar cell. J. Semicond., 2013, 34(5): 054005. doi: 10.1088/1674-4926/34/5/054005

[19]

Jia Guangzhi, Liu Honggang, Chang Hudong. Annealing optimization of hydrogenated amorphous silicon suboxide film for solar cell application. J. Semicond., 2011, 32(5): 052002. doi: 10.1088/1674-4926/32/5/052002

[20]

Xiang Zhang, Chunlai Huang, Lei Wang, Min Zhou. Collaborative R&D between multicrystalline silicon ingots and battery efficiency improvement—effect of shadow area in multicrystalline silicon ingots on cell efficiency. J. Semicond., 2018, 39(8): 083004. doi: 10.1088/1674-4926/39/8/083004

Search

Advanced Search >>

GET CITATION

L Fan, F Y Wang, J H Liang, X Yao, J Fang, D K Zhang, C C Wei, Y Zhao, X D Zhang. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact[J]. J. Semicond., 2017, 38(1): 014003. doi: 10.1088/1674-4926/38/1/014003.

Export: BibTex EndNote

Article Metrics

Article views: 1139 Times PDF downloads: 16 Times Cited by: 0 Times

History

Manuscript received: 06 September 2016 Manuscript revised: 01 December 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误