J. Semicond. > Volume 38 > Issue 1 > Article Number: 014004

A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2

Nanjie Guo , Taiyang Zhang , Ge Li , Feng Xu , Xufang Qian and Yixin Zhao ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The CH3NH3PbI3 (MAPbI3) perovskite was usually prepared by high-purity PbI2 with high cost. The low cost and low-purity PbI2 was seldom reported for fabrication of MAPbI3 because it cannot even dissolve well in widely adopted solvent of DMF. We developed an easy method to adapt low-purity PbI2 for fabrication of high quality MAPbI3 just by the simple addition of some hydrochloric acid into the mixture of low-purity PbI2, MAI and DMF. This straightforward method can not only help dissolve the low quality PbI2 by reacting with some impurities in DMF, but also lead to a successful fabrication of high-quality perovskite solar cells with up to 14.80% efficiency comparable to the high quality PbI2 precursors.

Key words: perovskite materiallow-quality PbI2hydrochloric acid

Abstract: The CH3NH3PbI3 (MAPbI3) perovskite was usually prepared by high-purity PbI2 with high cost. The low cost and low-purity PbI2 was seldom reported for fabrication of MAPbI3 because it cannot even dissolve well in widely adopted solvent of DMF. We developed an easy method to adapt low-purity PbI2 for fabrication of high quality MAPbI3 just by the simple addition of some hydrochloric acid into the mixture of low-purity PbI2, MAI and DMF. This straightforward method can not only help dissolve the low quality PbI2 by reacting with some impurities in DMF, but also lead to a successful fabrication of high-quality perovskite solar cells with up to 14.80% efficiency comparable to the high quality PbI2 precursors.

Key words: perovskite materiallow-quality PbI2hydrochloric acid



References:

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[2]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[3]

Bi D, Yang L, Boschloo G. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskitesensitized mesoscopic solar cells[J]. J Phys Chem Lett, 2013, 4(9): 1532. doi: 10.1021/jz400638x

[4]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316. doi: 10.1038/nature12340

[5]

Park N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J]. J Phys Chem Lett, 2013, 4(15): 2423. doi: 10.1021/jz400892a

[6]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg Chem, 2013, 52(15): 9019. doi: 10.1021/ic401215x

[7]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[8]

Zhao Y, Zhu K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells[J]. J Phys Chem Lett, 2013, 4(17): 2880. doi: 10.1021/jz401527q

[9]

Mei A, Li X, Liu L. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295. doi: 10.1126/science.1254763

[10]

Zhao Y, Zhu K. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition[J]. J Am Chem Soc, 2014, 136(35): 12241. doi: 10.1021/ja5071398

[11]

Dai X, Shi C, Zhang Y. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells[J]. J Semicond, 2015, 36(7): 074003. doi: 10.1088/1674-4926/36/7/074003

[12]

Li G, Zhang T, Zhao Y. Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance[J]. J Mater Chem A, 2015, 3(39): 19674. doi: 10.1039/C5TA06172E

[13]

Nie W Y, Tsai H H, Asadpour R. High-efficiency solutionprocessed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221): 522. doi: 10.1126/science.aaa0472

[14]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234. doi: 10.1126/science.aaa9272

[15]

Zhang T, Zhao Y. Recent progress of lead halide perovskite sensitized solar cells[J]. Acta Chim Sinica, 2015, 73(3): 202. doi: 10.6023/A14090656

[16]

Zhang T Y, Yang M J, Benson E E. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1-xClx)3[J]. Chem Commun, 2015, 51(37): 7820. doi: 10.1039/C5CC01835H

[17]

Si F, Tang F, Xue H. Effects of defect states on the performance of perovskite solar cells[J]. J Semicond, 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[18]

Wu Y, Yang R, Tian H. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction[J]. J Semicond, 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[19]

You J, Meng L, Song T B. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nature Nanotech, 2016, 11(1): 75.

[20]

Zhang J, Shi C, Chen J. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells[J]. J Semicond, 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002

[21]

Zhao Y X, Zhu K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chem Soc Rev, 2016, 45(3): 655. doi: 10.1039/C4CS00458B

[22]

Wakamiya A, Endo M, Sasamori T. Reproducible fabrication of efficient perovskite-based solar cells:X-ray crystallographic studies on the formation of CH3NH3PbI3 layers[J]. Chem Lett, 2014, 43(5): 711. doi: 10.1246/cl.140074

[23]

Baikie T, Fang Y, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[24]

Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nat Photon, 2014, 8(7): 506. doi: 10.1038/nphoton.2014.134

[25]

Chen Y N, Zhao Y X, Liang Z Q. Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl[J]. Chem Mater, 2015, 27(5): 1448. doi: 10.1021/acs.chemmater.5b00041

[26]

Dar M I, Arora N, Gao P. Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors[J]. Nano Lett, 2014, 14(12): 6991. doi: 10.1021/nl503279x

[27]

Dar M I, Ramos F J, Xue Z. Photoanode based on (001)-oriented anatase nanoplatelets for organic-inorganic lead iodide perovskite solar cell[J]. Chem Mater, 2014, 26(16): 4675. doi: 10.1021/cm502185s

[28]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[29]

Li X, Dar M J, Yi C Y. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides[J]. Nat Chem, 2015, 7(9): 703. doi: 10.1038/nchem.2324

[30]

Lv S L, Pang S P, Zhou Y Y. One-step, solution-processed formamidinium lead trihalide FAPbI3-xClx for mesoscopic perovskite-polymer solar cells[J]. Phys Chem Chem Phys, 2014, 16(36): 19206. doi: 10.1039/C4CP02113D

[31]

Qing J, Chandran H T, Cheng Y H. Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor[J]. ACS Appl Mater Interfaces, 2015, 7(41): 23110. doi: 10.1021/acsami.5b06819

[32]

Wang D, Liu Z H, Zhou Z M. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors[J]. Chem Mater, 2014, 26(24): 7145. doi: 10.1021/cm5037869

[33]

Wang Z W, Zhou Y Y, Pang S P. Additive-modulated evolution of HC(NH2)(2)PbI3 black polymorph for mesoscopic perovskite solar cells[J]. Chem Mater, 2015, 27(20): 7149. doi: 10.1021/acs.chemmater.5b03169

[34]

Xu M, Rong Y, Ku Z. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell[J]. J Mater Chem A, 2014, 2(23): 8607. doi: 10.1039/c4ta00379a

[35]

Yan K Y, Long M Z, Zhang T K. Hybrid halide perovskite solar cell precursors:colloidal chemistry and coordination engineering behind device processing for high efficiency[J]. J Am Chem Soc, 2015, 137(13): 4460. doi: 10.1021/jacs.5b00321

[36]

Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. J Phys Chem C, 2014, 118(18): 9412. doi: 10.1021/jp502696w

[37]

Zhang T, Guo N, Li G. A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells[J]. Nano Energy, 2016, 26: 50. doi: 10.1016/j.nanoen.2016.05.003

[38]

Bi D Q, El-Zohry A M, Hagfeldt A. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells[J]. ACS Photonics, 2015, 2(5): 589. doi: 10.1021/ph500255t

[39]

Cao D H, Stoumpos C C, Malliakas C D. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells[J]. APL Mater, 2014, 2(9): 091101. doi: 10.1063/1.4895038

[40]

Kim Y C, Jeon N J, Noh J H. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells[J]. Adv Energy Mater, 2016, 6(4): 8.

[41]

Lee Y H, Luo J S, Humphry-Baker R. Unraveling the reasons for efficiency loss in perovskite solar cells[J]. Adv Funct Mater, 2015, 25(25): 3925. doi: 10.1002/adfm.v25.25

[42]

Liu F, Dong Q, Wong M K. Is excess PbI2 beneficial for perovskite solar cell performance[J]. Adv Energy Mater, 2016, 6(7): 1502206. doi: 10.1002/aenm.201502206

[43]

Wang L, McCleese C, Kovalsky A. Femtosecond timeresolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films:evidence for passivation effect of PbI2[J]. J Am Chem Soc, 2014, 136(35): 12205. doi: 10.1021/ja504632z

[44]

Wang S M, Dong W W, Fang X D. Credible evidence for the passivation effect of remnant PbI2 in CH3NH3PbI3 films in improving the performance of perovskite solar cells[J]. Nanoscale, 2016, 8(12): 6600. doi: 10.1039/C5NR08344C

[45]

Li X, Bi D Q, Yi C Y. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58. doi: 10.1126/science.aaf8060

[1]

Kojima A, Teshima K, Shirai Y. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc, 2009, 131(17): 6050. doi: 10.1021/ja809598r

[2]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[3]

Bi D, Yang L, Boschloo G. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskitesensitized mesoscopic solar cells[J]. J Phys Chem Lett, 2013, 4(9): 1532. doi: 10.1021/jz400638x

[4]

Burschka J, Pellet N, Moon S J. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316. doi: 10.1038/nature12340

[5]

Park N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J]. J Phys Chem Lett, 2013, 4(15): 2423. doi: 10.1021/jz400892a

[6]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg Chem, 2013, 52(15): 9019. doi: 10.1021/ic401215x

[7]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[8]

Zhao Y, Zhu K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells[J]. J Phys Chem Lett, 2013, 4(17): 2880. doi: 10.1021/jz401527q

[9]

Mei A, Li X, Liu L. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295. doi: 10.1126/science.1254763

[10]

Zhao Y, Zhu K. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition[J]. J Am Chem Soc, 2014, 136(35): 12241. doi: 10.1021/ja5071398

[11]

Dai X, Shi C, Zhang Y. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells[J]. J Semicond, 2015, 36(7): 074003. doi: 10.1088/1674-4926/36/7/074003

[12]

Li G, Zhang T, Zhao Y. Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance[J]. J Mater Chem A, 2015, 3(39): 19674. doi: 10.1039/C5TA06172E

[13]

Nie W Y, Tsai H H, Asadpour R. High-efficiency solutionprocessed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221): 522. doi: 10.1126/science.aaa0472

[14]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234. doi: 10.1126/science.aaa9272

[15]

Zhang T, Zhao Y. Recent progress of lead halide perovskite sensitized solar cells[J]. Acta Chim Sinica, 2015, 73(3): 202. doi: 10.6023/A14090656

[16]

Zhang T Y, Yang M J, Benson E E. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1-xClx)3[J]. Chem Commun, 2015, 51(37): 7820. doi: 10.1039/C5CC01835H

[17]

Si F, Tang F, Xue H. Effects of defect states on the performance of perovskite solar cells[J]. J Semicond, 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[18]

Wu Y, Yang R, Tian H. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction[J]. J Semicond, 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[19]

You J, Meng L, Song T B. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers[J]. Nature Nanotech, 2016, 11(1): 75.

[20]

Zhang J, Shi C, Chen J. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells[J]. J Semicond, 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002

[21]

Zhao Y X, Zhu K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chem Soc Rev, 2016, 45(3): 655. doi: 10.1039/C4CS00458B

[22]

Wakamiya A, Endo M, Sasamori T. Reproducible fabrication of efficient perovskite-based solar cells:X-ray crystallographic studies on the formation of CH3NH3PbI3 layers[J]. Chem Lett, 2014, 43(5): 711. doi: 10.1246/cl.140074

[23]

Baikie T, Fang Y, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[24]

Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nat Photon, 2014, 8(7): 506. doi: 10.1038/nphoton.2014.134

[25]

Chen Y N, Zhao Y X, Liang Z Q. Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl[J]. Chem Mater, 2015, 27(5): 1448. doi: 10.1021/acs.chemmater.5b00041

[26]

Dar M I, Arora N, Gao P. Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors[J]. Nano Lett, 2014, 14(12): 6991. doi: 10.1021/nl503279x

[27]

Dar M I, Ramos F J, Xue Z. Photoanode based on (001)-oriented anatase nanoplatelets for organic-inorganic lead iodide perovskite solar cell[J]. Chem Mater, 2014, 26(16): 4675. doi: 10.1021/cm502185s

[28]

Lee M M, Teuscher J, Miyasaka T. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643. doi: 10.1126/science.1228604

[29]

Li X, Dar M J, Yi C Y. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides[J]. Nat Chem, 2015, 7(9): 703. doi: 10.1038/nchem.2324

[30]

Lv S L, Pang S P, Zhou Y Y. One-step, solution-processed formamidinium lead trihalide FAPbI3-xClx for mesoscopic perovskite-polymer solar cells[J]. Phys Chem Chem Phys, 2014, 16(36): 19206. doi: 10.1039/C4CP02113D

[31]

Qing J, Chandran H T, Cheng Y H. Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor[J]. ACS Appl Mater Interfaces, 2015, 7(41): 23110. doi: 10.1021/acsami.5b06819

[32]

Wang D, Liu Z H, Zhou Z M. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors[J]. Chem Mater, 2014, 26(24): 7145. doi: 10.1021/cm5037869

[33]

Wang Z W, Zhou Y Y, Pang S P. Additive-modulated evolution of HC(NH2)(2)PbI3 black polymorph for mesoscopic perovskite solar cells[J]. Chem Mater, 2015, 27(20): 7149. doi: 10.1021/acs.chemmater.5b03169

[34]

Xu M, Rong Y, Ku Z. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell[J]. J Mater Chem A, 2014, 2(23): 8607. doi: 10.1039/c4ta00379a

[35]

Yan K Y, Long M Z, Zhang T K. Hybrid halide perovskite solar cell precursors:colloidal chemistry and coordination engineering behind device processing for high efficiency[J]. J Am Chem Soc, 2015, 137(13): 4460. doi: 10.1021/jacs.5b00321

[36]

Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. J Phys Chem C, 2014, 118(18): 9412. doi: 10.1021/jp502696w

[37]

Zhang T, Guo N, Li G. A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells[J]. Nano Energy, 2016, 26: 50. doi: 10.1016/j.nanoen.2016.05.003

[38]

Bi D Q, El-Zohry A M, Hagfeldt A. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells[J]. ACS Photonics, 2015, 2(5): 589. doi: 10.1021/ph500255t

[39]

Cao D H, Stoumpos C C, Malliakas C D. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells[J]. APL Mater, 2014, 2(9): 091101. doi: 10.1063/1.4895038

[40]

Kim Y C, Jeon N J, Noh J H. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells[J]. Adv Energy Mater, 2016, 6(4): 8.

[41]

Lee Y H, Luo J S, Humphry-Baker R. Unraveling the reasons for efficiency loss in perovskite solar cells[J]. Adv Funct Mater, 2015, 25(25): 3925. doi: 10.1002/adfm.v25.25

[42]

Liu F, Dong Q, Wong M K. Is excess PbI2 beneficial for perovskite solar cell performance[J]. Adv Energy Mater, 2016, 6(7): 1502206. doi: 10.1002/aenm.201502206

[43]

Wang L, McCleese C, Kovalsky A. Femtosecond timeresolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films:evidence for passivation effect of PbI2[J]. J Am Chem Soc, 2014, 136(35): 12205. doi: 10.1021/ja504632z

[44]

Wang S M, Dong W W, Fang X D. Credible evidence for the passivation effect of remnant PbI2 in CH3NH3PbI3 films in improving the performance of perovskite solar cells[J]. Nanoscale, 2016, 8(12): 6600. doi: 10.1039/C5NR08344C

[45]

Li X, Bi D Q, Yi C Y. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58. doi: 10.1126/science.aaf8060

[1]

Zhu Xinghua, Zhao Beijun, Zhu Shifu, Jin Yingrong, Xiang Anping, Wei Zhaorong. Growth of PbI2 Crystal with Excessive Pb and Its Characterization. J. Semicond., 2007, 28(6): 898.

[2]

Sun Hui, Zhu Xinghua, Yang Dingyu, He Zhiyu, Zhu Shifu, Zhao Beijun. Electrical and γ-ray energy spectrum response properties of PbI2 crystal grown by physical vapor transport. J. Semicond., 2012, 33(5): 053002. doi: 10.1088/1674-4926/33/5/053002

[3]

Cheng Zhiming, Zhou Sumei, Chen Tongyun, Dong Yongping, Zhang Wangbing, Chu Xiangfeng. Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method. J. Semicond., 2012, 33(11): 112003. doi: 10.1088/1674-4926/33/11/112003

[4]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[5]

Zhan Da, Ma Xiaobo, Liu Weili, Song Zhitang, Feng Songlin. Fabrication of SOI Material Using Low Temperature Bonding Technology. J. Semicond., 2006, 27(S1): 189.

[6]

Jun Zhang. Perovskite Exciton-Polaritons. J. Semicond., 2019, 40(2): 020201. doi: 10.1088/1674-4926/40/2/020201

[7]

Ping Zhang, Yurong Zhou, Qingbo Yan, Fengzhen Liu, Jingwen Li, Gangqiang Dong. A combined experimental-computational study on nitrogen doped Cu2O as the wide-spectrum absorption material. J. Semicond., 2014, 35(10): 103001. doi: 10.1088/1674-4926/35/10/103001

[8]

Yang Hongdong, Yu Qi, Wang Xiangzhan, Li Jingchun, Ning Ning, Yang Mohua. Growth of strained-Si material using low-temperature Si combined with ion implantation technology. J. Semicond., 2010, 31(6): 063001. doi: 10.1088/1674-4926/31/6/063001

[9]

Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong. Applications of cesium in the perovskite solar cells. J. Semicond., 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003

[10]

Wu Changju, Wang Hao, Jin Zhonghe, Ma Huilian, Wang Yuelin. TDC Model for PSG Sacrificial Layer Etching with Hydrofluoric Acid. J. Semicond., 2008, 29(6): 1094.

[11]

Zhang Jian, Li Tingju, Ma Xiaodong, Luo Dawei, Liu Ning, Liu Dehua. Optimization of the acid leaching process by using an ultrasonic field for metallurgical grade silicon. J. Semicond., 2009, 30(5): 053002. doi: 10.1088/1674-4926/30/5/053002

[12]

Yi Hu, Yan Li, Yuling Liu, Yangang He. Planarization effect evaluation of acid and alkaline slurries in the copper interconnect process. J. Semicond., 2015, 36(3): 036001. doi: 10.1088/1674-4926/36/3/036001

[13]

Xiaoyan Dai, Chengwu Shi, Yanru Zhang, Ni Wu. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells. J. Semicond., 2015, 36(7): 074003. doi: 10.1088/1674-4926/36/7/074003

[14]

Liu Yanbo, Zhang Ting, Niu Xiaoming, Song Zhitang, Min Guoquan, Zhang Jing, Zhou Weimin, Wan Yongzhong, Zhang Jianping, Li Xiaoli, Feng Songlin. Si2Sb2Te5 phase change material studied by an atomic force microscope nano-tip. J. Semicond., 2009, 30(6): 063003. doi: 10.1088/1674-4926/30/6/063003

[15]

Su Jianxiu, Du Jiaxi, Zhang Zhuqing, Kang Renke. Material removal rate of 6H-SiC crystal substrate CMP using an alumina (Al2O3) abrasive. J. Semicond., 2012, 33(10): 106003. doi: 10.1088/1674-4926/33/10/106003

[16]

Hang Dong, Huiwen Xue, Qiming He, Yuan Qin, Guangzhong Jian, Shibing Long, Ming Liu. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J. Semicond., 2019, 40(1): 011802. doi: 10.1088/1674-4926/40/1/011802

[17]

Dan Han, Chenmin Dai, Shiyou Chen. Calculation studies on point defects in perovskite solar cells. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006

[18]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[19]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[20]

Jingbi You. Preface to the Special Topic on Perovskite Solar Cells. J. Semicond., 2017, 38(1): 011001. doi: 10.1088/1674-4926/38/1/011001

Search

Advanced Search >>

GET CITATION

N J Guo, T Y Zhang, G Li, F Xu, X F Qian, Y X Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2[J]. J. Semicond., 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004.

Export: BibTex EndNote

Article Metrics

Article views: 1087 Times PDF downloads: 27 Times Cited by: 0 Times

History

Manuscript received: 18 July 2016 Manuscript revised: 07 August 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误