J. Semicond. > Volume 38 > Issue 1 > Article Number: 014005

Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite

Tianyue Wang 1, , Jiewei Chen 1, , Gaoxiang Wu 1, , Dandan Song 1, and Meicheng Li 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures:sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells.

Key words: sandwich CIGS solar cellheterojunction perovskite solar cellsimulationwxAMPS

Abstract: Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures:sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells.

Key words: sandwich CIGS solar cellheterojunction perovskite solar cellsimulationwxAMPS



References:

[1]

Sandberg O J, Sundqvist A, Nyman M. Relating charge transport, contact properties, and recombination to open-circuit voltage in sandwich-type thin-film solar cells[J]. Phys Rev Appl, 2016, 5(4): 044005. doi: 10.1103/PhysRevApplied.5.044005

[2]

Yang Y, Chen W, Dou L T. High-performance multiple-donor bulk heterojunction solar cells[J]. Nat Photonics, 2015, 9(3): 190. doi: 10.1038/nphoton.2015.9

[3]

Wu Y M, Yang R X, Tian H M. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction[J]. J Semicond, 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[4]

Jin H H, Han H J, Lee M H. Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells[J]. Energy Environ Sci, 2015, 8(10): 2922. doi: 10.1039/C5EE01050K

[5]

Wu W Q, Lei BX, Rao H S. Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells[J]. Sci Rep, 2013, 3(2): 1352.

[6]

Sim H, Lee J, Cho S. A study on the band structure of ZnO/CdS heterojunction for CIGS solar-cell application[J]. J Semicond Technol Sci, 2015, 15(2): 267. doi: 10.5573/JSTS.2015.15.2.267

[7]

Contreras M A, Nakada T, Hongo M, et al. ZnO/ZnS(O,OH)/Cu(In,Ga)Se2 Mo solar cell with 18.6% efficiency. Proceedings of World Conference on Photovoltaic Energy Conversion, 2003

[8]

Goetzberger A, Knobloch J, Voβ B. The physics of solar cells[J]. Imperial College Press, 2003: 384.

[9]

Minemoto T, Matsui T, Takakura H. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation[J]. Sol Energy Materi Sol Cells, 2001, 67(1-4): 83. doi: 10.1016/S0927-0248(00)00266-X

[10]

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

[11]

Nie W, Tsai H, Asadpour R. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221): 522. doi: 10.1126/science.aaa0472

[12]

Wei D, Wang T Y, Ji J. Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface[J]. J Mater Chem A, 2016, 4(5): 1991. doi: 10.1039/C5TA08622A

[13]

Chen W Z, Huang X, Cheng Q J. Simulation analysis of heterojunction ZnO/CdS/Cu(In,Ga)Se2 thin-film solar cells using wxAMPS[J]. Optik-Int J Light Electron Opt, 2015, 127: 182.

[14]

Liu Y M, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS[J]. Sol Energy Mater Sol Cells, 2012, 98(1): 124.

[15]

Song D D, Wei D, Cui P. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells[J]. J Mater Chem A, 2016, 4(16): 6091. doi: 10.1039/C6TA00577B

[16]

https://wiki.cites.illinois.edu/wiki/display/solarcellsim/CIGS

[17]

De Wolf S, Holovsky J, Moon S J. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. J Phys Chem Lett, 2014, 5(6): 1035. doi: 10.1021/jz500279b

[18]

Wojciechowski K, Saliba M, Leijtens T. Sub-150℃ processed meso-superstructured perovskite solar cells with enhanced efficiency[J]. Energy Environ Sci, 2014, 7(3): 1142. doi: 10.1039/C3EE43707H

[19]

Liu W Q, Zhang Y. Electrical characterization of TiO2/CH3 NH3PbI3 heterojunction solar cells[J]. J Mater Chem A, 2014, 2(26): 10244. doi: 10.1039/c4ta01219d

[20]

Snaith H J, Gräzel M. Electron and hole transport through mesoporous TiO2 infiltrated with spiro-MeOTAD[J]. Adv Mater, 2007, 19(21): 3643. doi: 10.1002/(ISSN)1521-4095

[21]

Noh J H, Sang H I, Jin H H. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett, 2013, 13(4): 1764. doi: 10.1021/nl400349b

[22]

Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells[J]. Energy Environ Sci, 2013, 6(11): 3249. doi: 10.1039/c3ee42282h

[23]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg Chem, 2013, 52(15): 9019. doi: 10.1021/ic401215x

[24]

Fonash S J. Solar cell device physics. 2nd Ed. 2010

[25]

Liu Y M. Modeling of Cu(In,Ga)Se2 thin film solar cell device. Nankai University, 2012

[1]

Sandberg O J, Sundqvist A, Nyman M. Relating charge transport, contact properties, and recombination to open-circuit voltage in sandwich-type thin-film solar cells[J]. Phys Rev Appl, 2016, 5(4): 044005. doi: 10.1103/PhysRevApplied.5.044005

[2]

Yang Y, Chen W, Dou L T. High-performance multiple-donor bulk heterojunction solar cells[J]. Nat Photonics, 2015, 9(3): 190. doi: 10.1038/nphoton.2015.9

[3]

Wu Y M, Yang R X, Tian H M. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction[J]. J Semicond, 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[4]

Jin H H, Han H J, Lee M H. Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells[J]. Energy Environ Sci, 2015, 8(10): 2922. doi: 10.1039/C5EE01050K

[5]

Wu W Q, Lei BX, Rao H S. Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells[J]. Sci Rep, 2013, 3(2): 1352.

[6]

Sim H, Lee J, Cho S. A study on the band structure of ZnO/CdS heterojunction for CIGS solar-cell application[J]. J Semicond Technol Sci, 2015, 15(2): 267. doi: 10.5573/JSTS.2015.15.2.267

[7]

Contreras M A, Nakada T, Hongo M, et al. ZnO/ZnS(O,OH)/Cu(In,Ga)Se2 Mo solar cell with 18.6% efficiency. Proceedings of World Conference on Photovoltaic Energy Conversion, 2003

[8]

Goetzberger A, Knobloch J, Voβ B. The physics of solar cells[J]. Imperial College Press, 2003: 384.

[9]

Minemoto T, Matsui T, Takakura H. Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation[J]. Sol Energy Materi Sol Cells, 2001, 67(1-4): 83. doi: 10.1016/S0927-0248(00)00266-X

[10]

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

[11]

Nie W, Tsai H, Asadpour R. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221): 522. doi: 10.1126/science.aaa0472

[12]

Wei D, Wang T Y, Ji J. Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface[J]. J Mater Chem A, 2016, 4(5): 1991. doi: 10.1039/C5TA08622A

[13]

Chen W Z, Huang X, Cheng Q J. Simulation analysis of heterojunction ZnO/CdS/Cu(In,Ga)Se2 thin-film solar cells using wxAMPS[J]. Optik-Int J Light Electron Opt, 2015, 127: 182.

[14]

Liu Y M, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS[J]. Sol Energy Mater Sol Cells, 2012, 98(1): 124.

[15]

Song D D, Wei D, Cui P. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells[J]. J Mater Chem A, 2016, 4(16): 6091. doi: 10.1039/C6TA00577B

[16]

https://wiki.cites.illinois.edu/wiki/display/solarcellsim/CIGS

[17]

De Wolf S, Holovsky J, Moon S J. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. J Phys Chem Lett, 2014, 5(6): 1035. doi: 10.1021/jz500279b

[18]

Wojciechowski K, Saliba M, Leijtens T. Sub-150℃ processed meso-superstructured perovskite solar cells with enhanced efficiency[J]. Energy Environ Sci, 2014, 7(3): 1142. doi: 10.1039/C3EE43707H

[19]

Liu W Q, Zhang Y. Electrical characterization of TiO2/CH3 NH3PbI3 heterojunction solar cells[J]. J Mater Chem A, 2014, 2(26): 10244. doi: 10.1039/c4ta01219d

[20]

Snaith H J, Gräzel M. Electron and hole transport through mesoporous TiO2 infiltrated with spiro-MeOTAD[J]. Adv Mater, 2007, 19(21): 3643. doi: 10.1002/(ISSN)1521-4095

[21]

Noh J H, Sang H I, Jin H H. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett, 2013, 13(4): 1764. doi: 10.1021/nl400349b

[22]

Laban W A, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells[J]. Energy Environ Sci, 2013, 6(11): 3249. doi: 10.1039/c3ee42282h

[23]

Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg Chem, 2013, 52(15): 9019. doi: 10.1021/ic401215x

[24]

Fonash S J. Solar cell device physics. 2nd Ed. 2010

[25]

Liu Y M. Modeling of Cu(In,Ga)Se2 thin film solar cell device. Nankai University, 2012

[1]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[2]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[3]

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

[4]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[5]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[6]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[7]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[8]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[9]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[10]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[11]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[12]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[13]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[14]

Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005

[15]

Changyong Zheng, Wei Zhang, Tailong Xu, Yuehua Dai, Junning Chen. A compact model for single material double work function gate MOSFET. J. Semicond., 2013, 34(9): 094006. doi: 10.1088/1674-4926/34/9/094006

[16]

Jiang Shouzhen, Xu Xian'gang, Li Juan, Chen Xiufang, Wang Yingmin, Ning Li'na, Hu Xiaobo, Wang Jiyang, Jiang Minhua. Recent Progress in SiC Monocrystal Growth and Wafer Machining. J. Semicond., 2007, 28(5): 810.

[17]

Liu Xueqiang, Zhang Tong, Wang Lijie, Xia Zhiqiang, Li Mingyou, Liu Shiyong. A Testing Method on a Thin Film Transistor Array for Active Matrix Organic Emitting Diode. J. Semicond., 2007, 28(7): 1161.

[18]

Xu Shengrui, Hao Yue, Feng Hui, Li Dechang, Zhang Jincheng. A Novel Double RESURF TG-LDMOS Device Structure. J. Semicond., 2007, 28(2): 232.

[19]

Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002

[20]

Yi Pang, Xiang Li, Baiqin Zhao. Influence of the thickness change of the wave-guide layers on the threshold current of GaAs-based laser diode. J. Semicond., 2016, 37(8): 084007. doi: 10.1088/1674-4926/37/8/084007

Search

Advanced Search >>

GET CITATION

T Y Wang, J W Chen, G X Wu, Dandan Song and A Song, M C Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite[J]. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005.

Export: BibTex EndNote

Article Metrics

Article views: 1177 Times PDF downloads: 20 Times Cited by: 0 Times

History

Manuscript received: 23 August 2016 Manuscript revised: 10 October 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误