J. Semicond. > Volume 38 > Issue 10 > Article Number: 104005

Memristor interpretations based on constitutive relations

Wei Wu and Ning Deng ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The attractive memristor is interpreted based on its constitutive relation. The memory property of the memristor is explained, along with the explanation on its three fingerprints: (1) Pinched hysteresis loop; (2) Hysteresis lobe area decreases as frequency increases; (3) Pinched hysteresis loop shrinks to a single-valued function at infinite frequency. Where the magnetic flux is in Strukov’s memristor is also introduced. Resistive elements including the memristor are taken as an example to argue that the constitutive relation determines the electrical property of a circuit element and diagram method is used to distinguish different elements in the resistive element series.

Key words: memristormagnetic fluxconstitutive relationpinched hysteresis loop

Abstract: The attractive memristor is interpreted based on its constitutive relation. The memory property of the memristor is explained, along with the explanation on its three fingerprints: (1) Pinched hysteresis loop; (2) Hysteresis lobe area decreases as frequency increases; (3) Pinched hysteresis loop shrinks to a single-valued function at infinite frequency. Where the magnetic flux is in Strukov’s memristor is also introduced. Resistive elements including the memristor are taken as an example to argue that the constitutive relation determines the electrical property of a circuit element and diagram method is used to distinguish different elements in the resistive element series.

Key words: memristormagnetic fluxconstitutive relationpinched hysteresis loop



References:

[1]

Chua L O. Memristor—the missing circuit element[J]. IEEE Trans Circuit Theory, 1971, 18(5): 507. doi: 10.1109/TCT.1971.1083337

[2]

Strukov D, Snider G, Stewart D. The missing memristor found[J]. Nature, 2008, 453: 80. doi: 10.1038/nature06932

[3]

Ho P W C, Almurib H A F, Kumar T N. Memristive SRAM cell of seven transistors and one memristor[J]. J Semicond, 2016, 37(10): 104002. doi: 10.1088/1674-4926/37/10/104002

[4]

You Z Q, Hu F, Huang L M. A long lifetime, low error rate RRAM design with self-repair module[J]. J Semicond, 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004

[5]

Kokate P P. Memristor-based chaotic circuits[J]. IETE Techn Rev, 2009, 26(6): 417. doi: 10.4103/0256-4602.57827

[6]

Jo S H, Chang T, Ebong I. Nanoscale memristor device as synapse in neuromorphic dystems[J]. Nano Lett, 2010, 10(4): 1297. doi: 10.1021/nl904092h

[7]

Kim H, Sah M P, Yang C. Neural synaptic weighting with a pulse-based memristor circuit[J]. IEEE Trans Circuits Syst I, 2012, 59-I(1): 148.

[8]

Shinde S S, Dongle T D. Modelling of nanostructured TiO2-based memristors[J]. J Semicond, 2015, 36(3): 034001. doi: 10.1088/1674-4926/36/3/034001

[9]

Biolek Z, Biolek D, Biolkova V. SPICE model of memristor with nonlinear dopant drift[J]. Radioengineering, 2009, 18(2): 210.

[10]

Kumar A, Baghini M S. Experimental study for selection of electrode material for ZnO-based memristors[J]. Electron Lett, 2014, 50(21): 1547. doi: 10.1049/el.2014.1491

[11]

Ho P W C, Hatem F O, Almurib H A F. Comparison between Pt/TiO2/Pt and Pt/TaOx/TaOy/Pt based bipolar resistive switching devices[J]. J Semicond, 2016, 37(6): 064001. doi: 10.1088/1674-4926/37/6/064001

[12]

Adhikari S P, Sah M P, Kim H. Three fingerprints of memristor[J]. IEEE Trans Circuits Syst I, 2013, 60(11): 3008. doi: 10.1109/TCSI.2013.2256171

[13]

Chua L O. Nonlinear circuit foundations for nanodevices I: the four-element torus[J]. Proc IEEE, 2003, 9(11): 1830. doi: 10.1109/JPROC.2003.818319

[14]

Wang F Z. A triangular periodic table of elementary circuit elements[J]. IEEE Trans Circuits Syst I, 2013, 60(3): 616. doi: 10.1109/TCSI.2012.2209734

[15]

Kuzum D, Yu S, Wong H S. Synaptic electronics: materials, devices and applications[J]. Nanotechnology, 2013, 24(38): 382001. doi: 10.1088/0957-4484/24/38/382001

[1]

Chua L O. Memristor—the missing circuit element[J]. IEEE Trans Circuit Theory, 1971, 18(5): 507. doi: 10.1109/TCT.1971.1083337

[2]

Strukov D, Snider G, Stewart D. The missing memristor found[J]. Nature, 2008, 453: 80. doi: 10.1038/nature06932

[3]

Ho P W C, Almurib H A F, Kumar T N. Memristive SRAM cell of seven transistors and one memristor[J]. J Semicond, 2016, 37(10): 104002. doi: 10.1088/1674-4926/37/10/104002

[4]

You Z Q, Hu F, Huang L M. A long lifetime, low error rate RRAM design with self-repair module[J]. J Semicond, 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004

[5]

Kokate P P. Memristor-based chaotic circuits[J]. IETE Techn Rev, 2009, 26(6): 417. doi: 10.4103/0256-4602.57827

[6]

Jo S H, Chang T, Ebong I. Nanoscale memristor device as synapse in neuromorphic dystems[J]. Nano Lett, 2010, 10(4): 1297. doi: 10.1021/nl904092h

[7]

Kim H, Sah M P, Yang C. Neural synaptic weighting with a pulse-based memristor circuit[J]. IEEE Trans Circuits Syst I, 2012, 59-I(1): 148.

[8]

Shinde S S, Dongle T D. Modelling of nanostructured TiO2-based memristors[J]. J Semicond, 2015, 36(3): 034001. doi: 10.1088/1674-4926/36/3/034001

[9]

Biolek Z, Biolek D, Biolkova V. SPICE model of memristor with nonlinear dopant drift[J]. Radioengineering, 2009, 18(2): 210.

[10]

Kumar A, Baghini M S. Experimental study for selection of electrode material for ZnO-based memristors[J]. Electron Lett, 2014, 50(21): 1547. doi: 10.1049/el.2014.1491

[11]

Ho P W C, Hatem F O, Almurib H A F. Comparison between Pt/TiO2/Pt and Pt/TaOx/TaOy/Pt based bipolar resistive switching devices[J]. J Semicond, 2016, 37(6): 064001. doi: 10.1088/1674-4926/37/6/064001

[12]

Adhikari S P, Sah M P, Kim H. Three fingerprints of memristor[J]. IEEE Trans Circuits Syst I, 2013, 60(11): 3008. doi: 10.1109/TCSI.2013.2256171

[13]

Chua L O. Nonlinear circuit foundations for nanodevices I: the four-element torus[J]. Proc IEEE, 2003, 9(11): 1830. doi: 10.1109/JPROC.2003.818319

[14]

Wang F Z. A triangular periodic table of elementary circuit elements[J]. IEEE Trans Circuits Syst I, 2013, 60(3): 616. doi: 10.1109/TCSI.2012.2209734

[15]

Kuzum D, Yu S, Wong H S. Synaptic electronics: materials, devices and applications[J]. Nanotechnology, 2013, 24(38): 382001. doi: 10.1088/0957-4484/24/38/382001

[1]

Patrick W. C. Ho, Haider Abbas F. Almurib, T. Nandha Kumar. Memristive SRAM cell of seven transistors and one memristor. J. Semicond., 2016, 37(10): 104002. doi: 10.1088/1674-4926/37/10/104002

[2]

Jeetendra Singh, Balwinder Raj. Comparative analysis of memristor models and memories design. J. Semicond., 2018, 39(7): 074006. doi: 10.1088/1674-4926/39/7/074006

[3]

Wei Wu, Ning Deng. Electro-magnetic interpretation of four-element torus. J. Semicond., 2017, 38(11): 114008. doi: 10.1088/1674-4926/38/11/114008

[4]

Zhiqiang You, Fei Hu, Liming Huang, Peng Liu, Jishun Kuang, Shiying Li. A long lifetime, low error rate RRAM design with self-repair module. J. Semicond., 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004

[5]

Yanzhou Sun, Xiaoqian Liu, Dati Su, Huibin Yang. Memory characteristics of microcavity dielectric barrier discharge. J. Semicond., 2018, 39(11): 114008. doi: 10.1088/1674-4926/39/11/114008

[6]

S. S. Shinde, T. D. Dongle. Modelling of nanostructured TiO2-based memristors. J. Semicond., 2015, 36(3): 034001. doi: 10.1088/1674-4926/36/3/034001

[7]

Feng Liang, Benling Gao, Yu Gu. Magnetic flux assisted thermospin transport in a Rashba ring. J. Semicond., 2016, 37(10): 102003. doi: 10.1088/1674-4926/37/10/102003

[8]

Tan Yanliang, You Kaiming, Chen Liezun, Yuan Hongzhi. Relation of Negative Capacitance in LED to Rotational Frequency. J. Semicond., 2007, 28(5): 741.

[9]

Song Jianjun, Zhang Heming, Shu Bin, Hu Huiyong, Dai Xianying. The KP Dispersion Relation Near the Δi Valley in Strained Si1-xGex/Si. J. Semicond., 2008, 29(3): 442.

[10]

Kenyu Osada, Hiroyasu Katsuno, Toshiharu Irisawa, Yukio Saito. Scaling relation of domain competition on (2+1)-dimensional ballistic deposition model with surface diffusion. J. Semicond., 2016, 37(9): 092001. doi: 10.1088/1674-4926/37/9/092001

[11]

Zhang Wen, Xu Yuesheng, Wang Shengli. Magnetic Viscosity of Si Melt Under a Magnetic Field. J. Semicond., 2007, 28(1): 65.

[12]

Xiao Hongling, Wang Xiaoliang, Han Qin, Wang Junxi, Zhang Nanhong, Xu Yingqiang, Liu Hongxin, Zeng Yiping, Li Jinmin, Wu Ronghan. Effect of V/III Flux Ratio and Growth Temperature on Indium Droplet Formation During RF-MBE Growth of InN. J. Semicond., 2005, 26(13): 16.

[13]

Pan Jiangen, Shen Haiping, Feng Huajun. Measurement of Luminous Flux of Blue LEDs Using Spectral-Correction-Integral-Photometry Method. J. Semicond., 2006, 27(5): 932.

[14]

Jing Xiaocheng, Yao Ruohe, Lin Yushu. Magnetic Field Optimization of a Reactive Ion Etching Device with Magnetic Containment. J. Semicond., 2006, 27(13): 422.

[15]

Fang Yuming, Huang Qing’an, Li Weihua. A Model for the Pull-In Phenomenon of Magnetic Microactuators with the Reluctance of Magnetic Cores. J. Semicond., 2007, 28(10): 1647.

[16]

Shimin Feng, Suihua Zhou, Zhiyi Chen, Hongxin Zhang. An SLF magnetic antenna calibration system. J. Semicond., 2014, 35(5): 055011. doi: 10.1088/1674-4926/35/5/055011

[17]

Ping Sheng, Baomin Wang, Runwei Li. Flexible magnetic thin films and devices. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006

[18]

Yang Yintang, Li Yani, Zhu Zhangming. A high precision high PSRR bandgap reference with thermal hysteresis protection. J. Semicond., 2010, 31(9): 095010. doi: 10.1088/1674-4926/31/9/095010

[19]

Jie Yang, Kunpeng Jia, Yajuan Su, Yang Chen, Chao Zhao. Hysteresis analysis of graphene transistor under repeated test and gate voltage stress. J. Semicond., 2014, 35(9): 094003. doi: 10.1088/1674-4926/35/9/094003

[20]

Zhou Jianlin, Chen Rengang. A low voltage and small hysteresis C60 thin film transistor. J. Semicond., 2011, 32(2): 024006. doi: 10.1088/1674-4926/32/2/024006

Search

Advanced Search >>

GET CITATION

W Wu, N Deng. Memristor interpretations based on constitutive relations[J]. J. Semicond., 2017, 38(10): 104005. doi: 10.1088/1674-4926/38/10/104005.

Export: BibTex EndNote

Article Metrics

Article views: 360 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 24 February 2017 Manuscript revised: 10 April 2017 Online: Accepted Manuscript: 13 November 2017 Published: 01 October 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误