J. Semicond. > Volume 38 > Issue 2 > Article Number: 023003

Mesoporous tin oxide nanospheres for a NOx in air sensor

Haonan Zhang , Ming Zhuo , Yazi Luo and Yuejiao Chen ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Mesoporous tin oxide(SnO2/with a high surface area of 147.5 m2/g has been successfully synthesized via self-assembly process, combining the driven forces of water-evaporation and molecular interactions. Scanning electron microscope, X-ray diffraction, transmission electron micrograph, Fourier transform infrared and BrunauerEmmett-Teller were employed to analyze the morphology and crystal structure of the as-synthesized mesoporous materials. As a gas sensor, mesoporous SnO2 shows impressive performances towards NOx gas with high selectivity and stability as well as ultra high sensitivity about 94.3 to 10 ppm NOx gas at 300℃. The best response time of the sample S-500 is about 3.4s to 10 ppm NOx at 450℃.

Key words: mesoporous materialstin oxidesensornanospheres

Abstract: Mesoporous tin oxide(SnO2/with a high surface area of 147.5 m2/g has been successfully synthesized via self-assembly process, combining the driven forces of water-evaporation and molecular interactions. Scanning electron microscope, X-ray diffraction, transmission electron micrograph, Fourier transform infrared and BrunauerEmmett-Teller were employed to analyze the morphology and crystal structure of the as-synthesized mesoporous materials. As a gas sensor, mesoporous SnO2 shows impressive performances towards NOx gas with high selectivity and stability as well as ultra high sensitivity about 94.3 to 10 ppm NOx gas at 300℃. The best response time of the sample S-500 is about 3.4s to 10 ppm NOx at 450℃.

Key words: mesoporous materialstin oxidesensornanospheres



References:

[1]

Mei L, Chen Y, Ma J. Gas sensing of SnO2 nanocrystals revisited:developing ultra-sensitive sensors for detecting the H2S leakage of biogas[J]. Sci Rep, 2014, 4: 6028.

[2]

Fan Z, Yan J, Zhi L. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Adv Mater, 2010, 22(33): 3723. doi: 10.1002/adma.201001029

[3]

Wang D W, Li F, Zhao J. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode[J]. ACS Nano, 2009, 3(7): 1745. doi: 10.1021/nn900297m

[4]

Kh S K, Noshin F, Khaulah S. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique[J]. J Semicond, 2015, 36(3): 034005. doi: 10.1088/1674-4926/36/3/034005

[5]

Kim H J, Yoon J W, Choi K I. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures[J]. Nanoscale, 2013, 5(15): 7066. doi: 10.1039/c3nr01281f

[6]

Deng J, Ma J, Mei L. Porous α-Fe2O3 nanosphere-based H2S sensor with fast response, high selectivity and enhanced sensitivity[J]. J Maters Chem A, 2013, 1(40): 12400. doi: 10.1039/c3ta12253k

[7]

Chi X, Liu C, Zhang J. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. J Semicond, 2014, 35(6): 064005. doi: 10.1088/1674-4926/35/6/064005

[8]

Hong Y, Liang T, Ge B. A novel algorithmic method for piezoresistance calculation[J]. J Semicond, 2014, 35(5): 054009. doi: 10.1088/1674-4926/35/5/054009

[9]

Zhou L, Qin M, Chen S Q. Ceramic thermal wind sensor based on advanced direct chip attaching package[J]. J Semicond, 2014, 35(07): 074015. doi: 10.1088/1674-4926/35/7/074015

[10]

Yang T, Lu B. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries[J]. Phys Chem Chem Phys, 2014, 16(9): 4115. doi: 10.1039/c3cp54144d

[11]

Ma J, Zhang J, Wang S. Superior gas-sensing and lithiumstorage performance SnO2 nanocrystals synthesized by hydrothermal method[J]. Cryst Eng Comm, 2011, 13(20): 6077. doi: 10.1039/c1ce05320e

[12]

Kida T, Doi T, Shimanoe K. Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds[J]. Chem Mater, 2010, 22(8): 2662. doi: 10.1021/cm100228d

[13]

Zhuang Z, Huang F, Lin Z. Aggregation-induced fast crystal growth of SnO2 nanocrystals[J]. J Am Chem Soc, 2012, 134(39): 16228. doi: 10.1021/ja305305r

[14]

Liu J, Li Y, Huang X. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries[J]. J Mater Chem, 2009, 19(13): 1859. doi: 10.1039/b817036c

[15]

Cheng B, Russell J M, Shi W. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods[J]. J Amn Chem Soc, 2004, 126(19): 5972. doi: 10.1021/ja0493244

[16]

Xue X Y, He B, Yuan S. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes[J]. Nanotechnology, 2011, 22(39): 395702. doi: 10.1088/0957-4484/22/39/395702

[17]

Xue X, Chen Z, Ma C. One-step synthesis and gas-sensing characteristics of uniformly loaded Pt@SnO2 nanorods[J]. J Phys Chem C, 2010, 114(9): 3968. doi: 10.1021/jp908343r

[18]

Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions[J]. J Am Chem Soc, 2003, 125(52): 16176. doi: 10.1021/ja037743f

[19]

Fang X, Yan J, Hu L. Thin SnO2 nanowires with uniform diameter as excellent field emitters:a stability of more than 2400 minutes[J]. Adv Funct Mater, 2012, 22(8): 1613. doi: 10.1002/adfm.v22.8

[20]

Ye J, Zhang H, Yang R. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries[J]. Small, 2010, 6(2): 296. doi: 10.1002/smll.v6:2

[21]

Li Y, Zhao Y, Zhang Z. SnO2 nanobelts and nanocrystals:synthesis, characterization and optical properties[J]. J Cryst Growth, 2008, 310(18): 4226. doi: 10.1016/j.jcrysgro.2008.06.046

[22]

Xing L L, Yuan S, Chen Z H. Enhanced gas sensing performance of SnO2/α-MoO3 heterostructure nanobelts[J]. Nanotechnology, 2011, 22(22): 225502. doi: 10.1088/0957-4484/22/22/225502

[23]

Li K M, Li Y J, Lu M Y. Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties[J]. Adv Funct Mater, 2009, 19(15): 2453. doi: 10.1002/adfm.v19:15

[24]

Li F, Chen Y, Ma J. Porous SnO2 nanoplates for highly sensitive NO detection[J]. J Mater Chem A, 2014, 2(20): 7175. doi: 10.1039/c4ta00247d

[25]

Ding S, Chen J S, Qi G. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors[J]. J Am Chem Soc, 2010, 133(1): 21.

[26]

Wang Z, Luan D, Boey F Y C. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability[J]. J Am Chem Soc, 2011, 133(13): 4738. doi: 10.1021/ja2004329

[27]

Chen Y, Ma J, Yu L. Mesoporous SnO2 nanospheres formed via a water-evaporating process with superior electrochemical properties[J]. Cryst Eng Comm, 2012, 14(19): 6170. doi: 10.1039/c2ce25769f

[28]

Guo W, Duan X, Shen Y. Ionothermal synthesis of mesoporous SnO2 nanomaterials and their gas sensitivity depending on the reducing ability of toxic gases[J]. Phys Chem Chem Phys, 2013, 15(27): 11221. doi: 10.1039/c3cp51663f

[29]

Ramasamy E, Lee J. Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells[J]. J Phys Chem C, 2010, 114(50): 22032. doi: 10.1021/jp1074797

[30]

Zhu P, Reddy M, Wu Y. Mesoporous SnO2 agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells[J]. Chem Commun, 2012, 48(88): 10865. doi: 10.1039/c2cc36049g

[31]

Recham N, Dupont L, Courty M. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications[J]. Chem Mater, 2009, 21(6): 1096. doi: 10.1021/cm803259x

[32]

Matsunaga N, Sakai G, Shimanoe K. Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction-diffusion equation[J]. Sens Actuators B, 2003, 96(1): 226.

[33]

Florent M, Xue C, Zhao D. Formation mechanism of cubic mesoporous carbon monolith synthesized by evaporationinduced self-assembly[J]. Chem Mater, 2012, 24(2): 383. doi: 10.1021/cm2032493

[34]

Henzie J, Grüwald M, Widmer-Cooper A. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices[J]. Nat Mater, 2012, 11(2): 131.

[35]

Ku J, Aruguete D M, Alivisatos A P. Self-assembly of magnetic nanoparticles in evaporating solution[J]. J Am Chem Soc, 2010, 133(4): 838.

[36]

Ma J, Duan X, Lian J. Sb2S3 with various nanostructures:controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage[J]. Chem A Eur J, 2010, 16(44): 13210. doi: 10.1002/chem.201000962

[37]

Miszta K, De Graaf J, Bertoni G. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures[J]. Nat Mater, 2011, 10(11): 872. doi: 10.1038/nmat3121

[38]

Penza M, Tagliente M A, Mirenghi L. Tungsten trioxide (WO3/sputtered thin films for a NOx gas sensor[J]. Sens Actuators B, 1998, 50(1): 9. doi: 10.1016/S0925-4005(98)00149-X

[39]

Spencer M J S, Yarovsky I. ZnO nanostructures for gas sensing:interaction of NO2, NO, O, and N with the ZnO(1010) surface[J]. J Phys Chem C, 2010, 114(24): 10881. doi: 10.1021/jp1016938

[40]

Comini E. Metal oxide nano-crystals for gas sensing[J]. Anal Chim Acta, 2006, 568(1/2): 28.

[41]

Barsan N, Weimar U. Conduction model of metal oxide gas sensors[J]. J Electroceram, 2001, 7(3): 143. doi: 10.1023/A:1014405811371

[42]

Tiemann M. Porous metal oxides as gas sensors[J]. Chem A Eur J, 2007, 13(30): 8376. doi: 10.1002/(ISSN)1521-3765

[43]

Jeon J M, Shim Y S, Han S D. Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases[J]. J Mater Chem A, 2015, 3(35): 17939. doi: 10.1039/C5TA03293H

[44]

Cui Z M, Mechai A, Guo L. Palladium nanoparticles on the inner wall of tin oxide hollow nanospheres with enhanced hydrogen sensing properties[J]. RSC Adv, 2013, 3(35): 14979. doi: 10.1039/c3ra41941j

[45]

Wang L, Fei T, Deng J. Synthesis of rattle-type SnO2 structures with porous shells[J]. J Mater Chem, 2012, 22(35): 18111. doi: 10.1039/c2jm32520a

[46]

Shimizu Y, Egashira M. Basic aspects and challenges of semiconductor gas sensors[J]. MRS Bull, 1999, 24(06): 18. doi: 10.1557/S0883769400052465

[47]

Lv T, Chen Y, Ma J. Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors[J]. RSC Advances, 2014, 4(43): 22487. doi: 10.1039/c4ra03121k

[1]

Mei L, Chen Y, Ma J. Gas sensing of SnO2 nanocrystals revisited:developing ultra-sensitive sensors for detecting the H2S leakage of biogas[J]. Sci Rep, 2014, 4: 6028.

[2]

Fan Z, Yan J, Zhi L. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Adv Mater, 2010, 22(33): 3723. doi: 10.1002/adma.201001029

[3]

Wang D W, Li F, Zhao J. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode[J]. ACS Nano, 2009, 3(7): 1745. doi: 10.1021/nn900297m

[4]

Kh S K, Noshin F, Khaulah S. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique[J]. J Semicond, 2015, 36(3): 034005. doi: 10.1088/1674-4926/36/3/034005

[5]

Kim H J, Yoon J W, Choi K I. Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures[J]. Nanoscale, 2013, 5(15): 7066. doi: 10.1039/c3nr01281f

[6]

Deng J, Ma J, Mei L. Porous α-Fe2O3 nanosphere-based H2S sensor with fast response, high selectivity and enhanced sensitivity[J]. J Maters Chem A, 2013, 1(40): 12400. doi: 10.1039/c3ta12253k

[7]

Chi X, Liu C, Zhang J. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. J Semicond, 2014, 35(6): 064005. doi: 10.1088/1674-4926/35/6/064005

[8]

Hong Y, Liang T, Ge B. A novel algorithmic method for piezoresistance calculation[J]. J Semicond, 2014, 35(5): 054009. doi: 10.1088/1674-4926/35/5/054009

[9]

Zhou L, Qin M, Chen S Q. Ceramic thermal wind sensor based on advanced direct chip attaching package[J]. J Semicond, 2014, 35(07): 074015. doi: 10.1088/1674-4926/35/7/074015

[10]

Yang T, Lu B. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries[J]. Phys Chem Chem Phys, 2014, 16(9): 4115. doi: 10.1039/c3cp54144d

[11]

Ma J, Zhang J, Wang S. Superior gas-sensing and lithiumstorage performance SnO2 nanocrystals synthesized by hydrothermal method[J]. Cryst Eng Comm, 2011, 13(20): 6077. doi: 10.1039/c1ce05320e

[12]

Kida T, Doi T, Shimanoe K. Synthesis of monodispersed SnO2 nanocrystals and their remarkably high sensitivity to volatile organic compounds[J]. Chem Mater, 2010, 22(8): 2662. doi: 10.1021/cm100228d

[13]

Zhuang Z, Huang F, Lin Z. Aggregation-induced fast crystal growth of SnO2 nanocrystals[J]. J Am Chem Soc, 2012, 134(39): 16228. doi: 10.1021/ja305305r

[14]

Liu J, Li Y, Huang X. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries[J]. J Mater Chem, 2009, 19(13): 1859. doi: 10.1039/b817036c

[15]

Cheng B, Russell J M, Shi W. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods[J]. J Amn Chem Soc, 2004, 126(19): 5972. doi: 10.1021/ja0493244

[16]

Xue X Y, He B, Yuan S. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes[J]. Nanotechnology, 2011, 22(39): 395702. doi: 10.1088/0957-4484/22/39/395702

[17]

Xue X, Chen Z, Ma C. One-step synthesis and gas-sensing characteristics of uniformly loaded Pt@SnO2 nanorods[J]. J Phys Chem C, 2010, 114(9): 3968. doi: 10.1021/jp908343r

[18]

Wang Y, Jiang X, Xia Y. A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions[J]. J Am Chem Soc, 2003, 125(52): 16176. doi: 10.1021/ja037743f

[19]

Fang X, Yan J, Hu L. Thin SnO2 nanowires with uniform diameter as excellent field emitters:a stability of more than 2400 minutes[J]. Adv Funct Mater, 2012, 22(8): 1613. doi: 10.1002/adfm.v22.8

[20]

Ye J, Zhang H, Yang R. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries[J]. Small, 2010, 6(2): 296. doi: 10.1002/smll.v6:2

[21]

Li Y, Zhao Y, Zhang Z. SnO2 nanobelts and nanocrystals:synthesis, characterization and optical properties[J]. J Cryst Growth, 2008, 310(18): 4226. doi: 10.1016/j.jcrysgro.2008.06.046

[22]

Xing L L, Yuan S, Chen Z H. Enhanced gas sensing performance of SnO2/α-MoO3 heterostructure nanobelts[J]. Nanotechnology, 2011, 22(22): 225502. doi: 10.1088/0957-4484/22/22/225502

[23]

Li K M, Li Y J, Lu M Y. Direct conversion of single-layer SnO nanoplates to multi-layer SnO2 nanoplates with enhanced ethanol sensing properties[J]. Adv Funct Mater, 2009, 19(15): 2453. doi: 10.1002/adfm.v19:15

[24]

Li F, Chen Y, Ma J. Porous SnO2 nanoplates for highly sensitive NO detection[J]. J Mater Chem A, 2014, 2(20): 7175. doi: 10.1039/c4ta00247d

[25]

Ding S, Chen J S, Qi G. Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors[J]. J Am Chem Soc, 2010, 133(1): 21.

[26]

Wang Z, Luan D, Boey F Y C. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability[J]. J Am Chem Soc, 2011, 133(13): 4738. doi: 10.1021/ja2004329

[27]

Chen Y, Ma J, Yu L. Mesoporous SnO2 nanospheres formed via a water-evaporating process with superior electrochemical properties[J]. Cryst Eng Comm, 2012, 14(19): 6170. doi: 10.1039/c2ce25769f

[28]

Guo W, Duan X, Shen Y. Ionothermal synthesis of mesoporous SnO2 nanomaterials and their gas sensitivity depending on the reducing ability of toxic gases[J]. Phys Chem Chem Phys, 2013, 15(27): 11221. doi: 10.1039/c3cp51663f

[29]

Ramasamy E, Lee J. Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells[J]. J Phys Chem C, 2010, 114(50): 22032. doi: 10.1021/jp1074797

[30]

Zhu P, Reddy M, Wu Y. Mesoporous SnO2 agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells[J]. Chem Commun, 2012, 48(88): 10865. doi: 10.1039/c2cc36049g

[31]

Recham N, Dupont L, Courty M. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications[J]. Chem Mater, 2009, 21(6): 1096. doi: 10.1021/cm803259x

[32]

Matsunaga N, Sakai G, Shimanoe K. Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction-diffusion equation[J]. Sens Actuators B, 2003, 96(1): 226.

[33]

Florent M, Xue C, Zhao D. Formation mechanism of cubic mesoporous carbon monolith synthesized by evaporationinduced self-assembly[J]. Chem Mater, 2012, 24(2): 383. doi: 10.1021/cm2032493

[34]

Henzie J, Grüwald M, Widmer-Cooper A. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices[J]. Nat Mater, 2012, 11(2): 131.

[35]

Ku J, Aruguete D M, Alivisatos A P. Self-assembly of magnetic nanoparticles in evaporating solution[J]. J Am Chem Soc, 2010, 133(4): 838.

[36]

Ma J, Duan X, Lian J. Sb2S3 with various nanostructures:controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage[J]. Chem A Eur J, 2010, 16(44): 13210. doi: 10.1002/chem.201000962

[37]

Miszta K, De Graaf J, Bertoni G. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures[J]. Nat Mater, 2011, 10(11): 872. doi: 10.1038/nmat3121

[38]

Penza M, Tagliente M A, Mirenghi L. Tungsten trioxide (WO3/sputtered thin films for a NOx gas sensor[J]. Sens Actuators B, 1998, 50(1): 9. doi: 10.1016/S0925-4005(98)00149-X

[39]

Spencer M J S, Yarovsky I. ZnO nanostructures for gas sensing:interaction of NO2, NO, O, and N with the ZnO(1010) surface[J]. J Phys Chem C, 2010, 114(24): 10881. doi: 10.1021/jp1016938

[40]

Comini E. Metal oxide nano-crystals for gas sensing[J]. Anal Chim Acta, 2006, 568(1/2): 28.

[41]

Barsan N, Weimar U. Conduction model of metal oxide gas sensors[J]. J Electroceram, 2001, 7(3): 143. doi: 10.1023/A:1014405811371

[42]

Tiemann M. Porous metal oxides as gas sensors[J]. Chem A Eur J, 2007, 13(30): 8376. doi: 10.1002/(ISSN)1521-3765

[43]

Jeon J M, Shim Y S, Han S D. Vertically ordered SnO2 nanobamboos for substantially improved detection of volatile reducing gases[J]. J Mater Chem A, 2015, 3(35): 17939. doi: 10.1039/C5TA03293H

[44]

Cui Z M, Mechai A, Guo L. Palladium nanoparticles on the inner wall of tin oxide hollow nanospheres with enhanced hydrogen sensing properties[J]. RSC Adv, 2013, 3(35): 14979. doi: 10.1039/c3ra41941j

[45]

Wang L, Fei T, Deng J. Synthesis of rattle-type SnO2 structures with porous shells[J]. J Mater Chem, 2012, 22(35): 18111. doi: 10.1039/c2jm32520a

[46]

Shimizu Y, Egashira M. Basic aspects and challenges of semiconductor gas sensors[J]. MRS Bull, 1999, 24(06): 18. doi: 10.1557/S0883769400052465

[47]

Lv T, Chen Y, Ma J. Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors[J]. RSC Advances, 2014, 4(43): 22487. doi: 10.1039/c4ra03121k

[1]

Ibiyemi Abideen, Yusuf Gbadebo, Faremi Abass. Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles. J. Semicond., 2017, 38(7): 072001. doi: 10.1088/1674-4926/38/7/072001

[2]

Bo Liu, Xiao Chen, Hualin Cai, Mohammad Ali Mohammad, Xiangguang Tian, Luqi Tao, Yi Yang, Tianling Ren. Surface acoustic wave devices for sensor applications. J. Semicond., 2016, 37(2): 021001. doi: 10.1088/1674-4926/37/2/021001

[3]

Shadia. J. Ikhmayies, Riyad N Ahmad-Bitar. Using I-V characteristics to investigate selected contacts for SnO2:F thin films. J. Semicond., 2012, 33(8): 083001. doi: 10.1088/1674-4926/33/8/083001

[4]

Kh. S. Karimov, Noshin Fatima, Khaulah Sulaiman, M. Mahroof Tahir, Zubair Ahmad, A. Mateen. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique. J. Semicond., 2015, 36(3): 034005. doi: 10.1088/1674-4926/36/3/034005

[5]

Zhuang Zhiwei, Wang Zheyao, Liu Litian. Design and Optimization of SOI Piezoresistive MicrocantileverSensors for Use in Surface Stress Measurement. J. Semicond., 2006, 27(10): 1844.

[6]

Kh. S. Karimov, M. Saleem, Z. M. Karieva, A. Mateen, M. Tariq Saeed Chani, Q. Zafar. Humidity sensing properties of Cu2O-PEPC nanocomposite films. J. Semicond., 2012, 33(7): 073001. doi: 10.1088/1674-4926/33/7/073001

[7]

Zhou Shenghua, Yang Zhichao, Wu Nanjian, Li Meiyun. Small Size,Low Power RFID RF Front End Circuit Design. J. Semicond., 2006, 27(S1): 361.

[8]

Ke Liu, Zhankun Du, Li Shao, Xiao Ma. A trimming technique for capacitive SAR ADC as sensor interface. J. Semicond., 2015, 36(12): 125004. doi: 10.1088/1674-4926/36/12/125004

[9]

H. Bendjedidi, A. Attaf, H. Saidi, M. S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. J. Semicond., 2015, 36(12): 123002. doi: 10.1088/1674-4926/36/12/123002

[10]

G. R. A. Kumara, U. Deshapriya, C. S. K. Ranasinghe, E. N. Jayaweera, R. M. G. Rajapakse. Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye. J. Semicond., 2018, 39(3): 033005. doi: 10.1088/1674-4926/39/3/033005

[11]

Han Weiqing, Zhou Gang, Wang Lianjun, Sun Xiuyun, Li Jiansheng. Fabrication of Tin Oxide Porous Nanostructures on Titanium by Anodization and Electroplating. J. Semicond., 2006, 27(12): 2134.

[12]

Rui Geng, Yuxin Gong. High performance active image sensor pixel design with circular structure oxide TFT. J. Semicond., 2019, 40(2): 022402. doi: 10.1088/1674-4926/40/2/022402

[13]

Lin Liu, Yingyi Wang, Guanghui Li, Sujie Qin, Ting Zhang. Ultrathin free-standing graphene oxide film based flexible touchless sensor. J. Semicond., 2018, 39(1): 013002. doi: 10.1088/1674-4926/39/1/013002

[14]

A. R. Babar, S. S. Shinde, A.V. Moholkar, C. H. Bhosale, J. H. Kim, K. Y. Rajpure. Physical properties of sprayed antimony doped tin oxide thin films: Role of thickness. J. Semicond., 2011, 32(5): 053001. doi: 10.1088/1674-4926/32/5/053001

[15]

Zheng Huaiwen, Zhang Yiyun, Yang Hua, Xue Bin, Wu Kui, Li Jing, Wang Guohong. Light extraction efficiency enhancement in light-emitting diodes with indium tin oxide nano-craters. J. Semicond., 2012, 33(5): 054009. doi: 10.1088/1674-4926/33/5/054009

[16]

Xutang Tao, Jiandong Ye, Shibing Long, Zhitai Jia. Preface to the Special Issue on Ultra-Wide Bandgap Semiconductor Gallium Oxide: from Materials to Devices. J. Semicond., 2019, 40(1): 010101. doi: 10.1088/1674-4926/40/1/010101

[17]

Huamao Huang, Jinyong Hu, Hong Wang. GaN-based light-emitting diodes with hybrid micro/nano-textured indium-tin-oxide layer. J. Semicond., 2014, 35(8): 084006. doi: 10.1088/1674-4926/35/8/084006

[18]

Huang Xiaodong, Huang Jianqiu, Qin Ming, Huang Qing’an. A Novel Capacitive Pressure Sensor. J. Semicond., 2008, 29(3): 428.

[19]

Han Lei, Huang Qing’an, Liao Xiaoping. Optimization of a Thermoelectric Microwave Power Sensor. J. Semicond., 2008, 29(4): 789.

[20]

Zhang Xun, Wang Peng, Jin Dongming. A New Type of CMOS Temperature Sensor. J. Semicond., 2005, 26(11): 2202.

Search

Advanced Search >>

GET CITATION

H N Zhang, M Zhuo, Y Z Luo, Y J Chen. Mesoporous tin oxide nanospheres for a NOx in air sensor[J]. J. Semicond., 2017, 38(2): 023003. doi: 10.1088/1674-4926/38/2/023003.

Export: BibTex EndNote

Article Metrics

Article views: 799 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 25 April 2016 Manuscript revised: 20 September 2016 Online: Published: 01 February 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误