J. Semicond. > Volume 38 > Issue 3 > Article Number: 031006

Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

Qing-Hai Tan 1, 2, , Xin Zhang 1, , Xiang-Dong Luo 1, 3, , Jun Zhang 1, 2, and Ping-Heng Tan 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency (<50 cm-1) modes, such as shear and layer-breathing modes have been well-established. Here, we review the layer-number dependent high-frequency (>50 cm-1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials.

Key words: transition metal dichalcogenidesRaman spectroscopyinterlayer couplingDavydov splittingvan der Waals model

Abstract: Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency (<50 cm-1) modes, such as shear and layer-breathing modes have been well-established. Here, we review the layer-number dependent high-frequency (>50 cm-1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials.

Key words: transition metal dichalcogenidesRaman spectroscopyinterlayer couplingDavydov splittingvan der Waals model



References:

[1]

Splendiani A, Sun L, Zhang Y B. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(16): 1271.

[2]

Mak K F, Lee C G, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(20): 136805.

[3]

Cao T, Wang G, Han W P. Alley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nat Commun, 2012, 3(8): 887.

[4]

Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(10): 419.

[5]

Dean C, Young A F, Wang L. Graphene based heterostructures[J]. Solid State Commun, 2012, 152(6): 1275.

[6]

Liang L B, Meunier V. First-principles Raman spectra of MoS2, WS2 and their heterostructures[J]. Nanoscale, 2014, 6(4): 5394.

[7]

Lou Z, Liang Z Z, Shen G Z. Photodetectors based on two dimensional materials[J]. J Semicond, 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[8]

Xia C X, Li J B. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides[J]. J Semicond, 2016, 37(5): 051001. doi: 10.1088/1674-4926/37/5/051001

[9]

Lee C G, Yan H G, Brus L E. Anomalous lattice vibrations of single-and few-layer MoS2[J]. ACS Nano, 2010, 4(9): 2695.

[10]

Zhang X, Qiao X F, Shi W. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material[J]. Chem Soc Rev, 2015, 44(1): 2757.

[11]

Puretzky A A, Liang L B, Li X F. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations[J]. ACS Nano, 2015, 9(53): 6333.

[12]

Wu JB, WangH , Li XL, et al. Ramanspectroscopiccharacterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition[J]. Carbon, 2016, 110(9): 225.

[13]

Zhang X, Han W P, Qiao X F. Raman characterization of AB- and ABC-stacked few-layer graphene by interlayer shear modes[J]. Carbon, 2016, 99(10): 118.

[14]

Zhang X, Tan Q H, Wu J B. Review on the Raman spectroscopyofdifferenttypesoflayeredmaterials[J]. Nanoscale, 2016, 8: 6435. doi: 10.1039/C5NR07205K

[15]

Tan P H, Han W P, Zhao W J. The shear mode of multilayer graphene[J]. Nat Mater, 2012, 11(6): 294.

[16]

Zhang X, Han W P, Wu J B.. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2[J]. Phys Rev B, 2013, 87(1): 115413.

[17]

Zhao Y Y, Luo X, Li H. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2[J]. Nano Lett, 2013, 13(2): 1007.

[18]

Qiao X F, Li X L, Zhang X. Substrate-free layernumber identification of two-dimensional materials:a case of Mo0.5W0.5S2 alloy.[J]. Appl Phys Lett, 2015, 106(22): 223102. doi: 10.1063/1.4921911

[19]

Zallen R, Slade M L, Ward A T. Lattice vibrations and interlayer interactions in crystalline As2S3 and As2Se3[J]. Phys Rev B, 1971, 3(17): 4257.

[20]

Wieting T J, Verble J L. Interlayer bonding and the lattice vibrations of β-GaSe[J]. Phys Rev B, 1972, 5(0): 1473.

[21]

Song Q J, Tan Q H, Zhang X. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2[J]. Phys Rev B, 2016, 93(9): 115409.

[22]

Kim K, Lee J U, Nam D. Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2[J]. ACS Nano, 2016, 10(8): 8113. doi: 10.1021/acsnano.6b04471

[23]

Verble L, Wieting T J. Lattice mode degeneracy in MoS2 and other layer compounds[J]. Phys Rev B, 1970, 25(4): 362.

[24]

Wieting T J, Verble J L. Infrared and Raman studies of longwavelength optical phonons in hexagonal MoS2[J]. Phys Rev B, 1971, 3(0): 4286.

[25]

Tonndorf P, Schmidt R, Philipp B. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2[J]. Opt Express, 2013, 21(4): 4908. doi: 10.1364/OE.21.004908

[26]

Staiger M, Gillen R, Scheuschner N. Splitting of monolayer out-of-plane A'1 Raman mode in few-layer WS2[J]. Phys Rev B, 2015, 91(8): 195419.

[27]

Froehlicher G, Lorchat E, Fernique F. Unified description of the optical phonon modes in n-layer MoTe2[J]. Nano Lett, 2015, 15(10): 6481. doi: 10.1021/acs.nanolett.5b02683

[28]

Ghosh P N, Maiti C R. Interlayer force and Davydov splitting in 2H-MoS2[J]. Phys Rev B, 1983, 28(3): 2237.

[29]

Wu J B, Zhang X, Ijaes M. Resonant Raman spectroscopy of twisted multilayer graphene[J]. Nat Commun, 2014, 5(7): 5309.

[30]

Lin M L, Ran F R, Qiao X F. Ultralow-frequency Raman system down to 10 cm-1 with longpass edge filters and its application to the interface coupling in t(2+2) LGs[J]. Rev Sci Instrum, 2016, 87(5): 053122. doi: 10.1063/1.4952384

[1]

Splendiani A, Sun L, Zhang Y B. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(16): 1271.

[2]

Mak K F, Lee C G, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105(20): 136805.

[3]

Cao T, Wang G, Han W P. Alley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nat Commun, 2012, 3(8): 887.

[4]

Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 2013, 499(10): 419.

[5]

Dean C, Young A F, Wang L. Graphene based heterostructures[J]. Solid State Commun, 2012, 152(6): 1275.

[6]

Liang L B, Meunier V. First-principles Raman spectra of MoS2, WS2 and their heterostructures[J]. Nanoscale, 2014, 6(4): 5394.

[7]

Lou Z, Liang Z Z, Shen G Z. Photodetectors based on two dimensional materials[J]. J Semicond, 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[8]

Xia C X, Li J B. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides[J]. J Semicond, 2016, 37(5): 051001. doi: 10.1088/1674-4926/37/5/051001

[9]

Lee C G, Yan H G, Brus L E. Anomalous lattice vibrations of single-and few-layer MoS2[J]. ACS Nano, 2010, 4(9): 2695.

[10]

Zhang X, Qiao X F, Shi W. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material[J]. Chem Soc Rev, 2015, 44(1): 2757.

[11]

Puretzky A A, Liang L B, Li X F. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations[J]. ACS Nano, 2015, 9(53): 6333.

[12]

Wu JB, WangH , Li XL, et al. Ramanspectroscopiccharacterization of stacking configuration and interlayer coupling of twisted multilayer graphene grown by chemical vapor deposition[J]. Carbon, 2016, 110(9): 225.

[13]

Zhang X, Han W P, Qiao X F. Raman characterization of AB- and ABC-stacked few-layer graphene by interlayer shear modes[J]. Carbon, 2016, 99(10): 118.

[14]

Zhang X, Tan Q H, Wu J B. Review on the Raman spectroscopyofdifferenttypesoflayeredmaterials[J]. Nanoscale, 2016, 8: 6435. doi: 10.1039/C5NR07205K

[15]

Tan P H, Han W P, Zhao W J. The shear mode of multilayer graphene[J]. Nat Mater, 2012, 11(6): 294.

[16]

Zhang X, Han W P, Wu J B.. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2[J]. Phys Rev B, 2013, 87(1): 115413.

[17]

Zhao Y Y, Luo X, Li H. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2[J]. Nano Lett, 2013, 13(2): 1007.

[18]

Qiao X F, Li X L, Zhang X. Substrate-free layernumber identification of two-dimensional materials:a case of Mo0.5W0.5S2 alloy.[J]. Appl Phys Lett, 2015, 106(22): 223102. doi: 10.1063/1.4921911

[19]

Zallen R, Slade M L, Ward A T. Lattice vibrations and interlayer interactions in crystalline As2S3 and As2Se3[J]. Phys Rev B, 1971, 3(17): 4257.

[20]

Wieting T J, Verble J L. Interlayer bonding and the lattice vibrations of β-GaSe[J]. Phys Rev B, 1972, 5(0): 1473.

[21]

Song Q J, Tan Q H, Zhang X. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2[J]. Phys Rev B, 2016, 93(9): 115409.

[22]

Kim K, Lee J U, Nam D. Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2[J]. ACS Nano, 2016, 10(8): 8113. doi: 10.1021/acsnano.6b04471

[23]

Verble L, Wieting T J. Lattice mode degeneracy in MoS2 and other layer compounds[J]. Phys Rev B, 1970, 25(4): 362.

[24]

Wieting T J, Verble J L. Infrared and Raman studies of longwavelength optical phonons in hexagonal MoS2[J]. Phys Rev B, 1971, 3(0): 4286.

[25]

Tonndorf P, Schmidt R, Philipp B. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2[J]. Opt Express, 2013, 21(4): 4908. doi: 10.1364/OE.21.004908

[26]

Staiger M, Gillen R, Scheuschner N. Splitting of monolayer out-of-plane A'1 Raman mode in few-layer WS2[J]. Phys Rev B, 2015, 91(8): 195419.

[27]

Froehlicher G, Lorchat E, Fernique F. Unified description of the optical phonon modes in n-layer MoTe2[J]. Nano Lett, 2015, 15(10): 6481. doi: 10.1021/acs.nanolett.5b02683

[28]

Ghosh P N, Maiti C R. Interlayer force and Davydov splitting in 2H-MoS2[J]. Phys Rev B, 1983, 28(3): 2237.

[29]

Wu J B, Zhang X, Ijaes M. Resonant Raman spectroscopy of twisted multilayer graphene[J]. Nat Commun, 2014, 5(7): 5309.

[30]

Lin M L, Ran F R, Qiao X F. Ultralow-frequency Raman system down to 10 cm-1 with longpass edge filters and its application to the interface coupling in t(2+2) LGs[J]. Rev Sci Instrum, 2016, 87(5): 053122. doi: 10.1063/1.4952384

[1]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[2]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[3]

Sanghoon Lee, Sunjae Chung, Hakjoon Lee, Xinyu Liu, M. Dobrowolska, J. K. Furdyna. Interlayer exchange coupling in (Ga,Mn)As ferromagnetic semiconductor multilayer systems. J. Semicond., 2019, 40(8): 081503. doi: 10.1088/1674-4926/40/8/081503

[4]

Zheng Wenli, Li Tinghui. Compositional dependence of Raman frequencies in SixGe1-x alloys. J. Semicond., 2012, 33(11): 112001. doi: 10.1088/1674-4926/33/11/112001

[5]

Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, Ashok Jadhavar, Avinash Rokade, Adinath Funde, Kakasaheb Mohite, Manish Shinde, Habib Pathan, Rupesh Devan, Sandesh Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications. J. Semicond., 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001

[6]

Wang Jianhui, Wang Xinhua, Pang Lei, Chen Xiaojuan, Jin Zhi, Liu Xinyu. Effect of varying layouts on the gate temperature for multi-finger AlGaN/GaN HEMTs. J. Semicond., 2012, 33(9): 094004. doi: 10.1088/1674-4926/33/9/094004

[7]

Thierno Sall, A. Nafidi, Bernabé Marí Soucase, Miguel Mollar, Bouchaib Hartitti, Mounir Fahoume. Synthesis of In2S3 thin films by spray pyrolysis from precursors with different[S]/[In] ratios. J. Semicond., 2014, 35(6): 063002. doi: 10.1088/1674-4926/35/6/063002

[8]

Liyuan Yang, Shan Ai, Yonghe Chen, Mengyi Cao, Kai Zhang, Xiaohua Ma, Yue Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005

[9]

Jie Su, Tong Liu, Jingming Liu, Jun Yang, Guiying Shen, Yongbiao Bai, Zhiyuan Dong, Youwen Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal. J. Semicond., 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004

[10]

Chao Li, Peng Zhou, David Wei Zhang. Devices and applications of van der Waals heterostructures. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005

[11]

Shuxian Wang, Zhihao Yu, Xinran Wang. Electrical contacts to two-dimensional transition-metal dichalcogenides. J. Semicond., 2018, 39(12): 124001. doi: 10.1088/1674-4926/39/12/124001

[12]

Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: a first-principle study. J. Semicond., 2019, 40(8): 081509. doi: 10.1088/1674-4926/40/8/081509

[13]

Gang Xiang. Epitaxial lift-off of ferromagnetic (Ga,Mn)As nanoflakes for van der Waals heterostructures. J. Semicond., 2019, 40(8): 080203. doi: 10.1088/1674-4926/40/8/080203

[14]

Jiawei Wan, Junhong Guo, Fangren Hu. Identification of strained black phosphorous by Raman spectroscopy. J. Semicond., 2017, 38(4): 042003. doi: 10.1088/1674-4926/38/4/042003

[15]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 1.

[16]

Feiping Lu, Yingquan Peng, Yongzhong Xing. Numerical model of tandem organic light-emitting diodes based on a transition metal oxide interconnector layer. J. Semicond., 2014, 35(4): 044005. doi: 10.1088/1674-4926/35/4/044005

[17]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[18]

Duan Huantao, Gu Wenping, Zhang Jincheng, Hao Yue, Chen Chi, Ni Jinyu, Xu Shengrui. Characterization of GaN grown on 4H-SiC and sapphire by Raman spectroscopy and high resolution XRD. J. Semicond., 2009, 30(7): 073001. doi: 10.1088/1674-4926/30/7/073001

[19]

Zhang Guangchen, Feng Shiwei, Li Jingwan, Zhao Yan, Guo Chunsheng. Determination of channel temperature for AlGaN/GaN HEMTs by high spectral resolution micro-Raman spectroscopy. J. Semicond., 2012, 33(4): 044003. doi: 10.1088/1674-4926/33/4/044003

[20]

Liang Ting, Li Junhong, Du Wenlong, Xue Chenyang, Zhang Wendong. Raman scattering studies on PZT thin films for trigonal–tetragonal phase transition. J. Semicond., 2009, 30(8): 083001. doi: 10.1088/1674-4926/30/8/083001

Search

Advanced Search >>

GET CITATION

Q H Tan, X Zhang, X D Luo, J Zhang, P H Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings[J]. J. Semicond., 2017, 38(3): 031006. doi: 10.1088/1674-4926/38/3/031006.

Export: BibTex EndNote

Article Metrics

Article views: 750 Times PDF downloads: 13 Times Cited by: 0 Times

History

Manuscript received: 08 November 2016 Manuscript revised: 30 December 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误