J. Semicond. > Volume 38 > Issue 3 > Article Number: 033002

Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions

Hanming Zhou , Xiao Lin , Hongwei Guo , Shisheng Lin , Yiwei Sun and Yang Xu ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Two-dimensional silicon carbide (2d-SiC) is a viable material for next generation electronics due to its moderate, direct bandgap with huge potential. In particular, its potential for p-n junctions is yet to be explored. In this paper, three types of 2d-SiC-based p-n junctions with different doping configuration are modeled. The doping configurations refer to partially replacing carbon with boron or nitrogen atoms along the zigzag or armchair direction, respectively. By employing density functional theory, we calculate the transport properties of the SiC based p-n junctions and obtain negative differential resistance and high rectification ratio. We also find that the junction along the zigzag direction with lower doping density exhibits optimized rectification performance. Our study suggests that 2d-SiC is a promising candidate as a material platform for future nano-devices.

Key words: SiCtransporttwo-dimension

Abstract: Two-dimensional silicon carbide (2d-SiC) is a viable material for next generation electronics due to its moderate, direct bandgap with huge potential. In particular, its potential for p-n junctions is yet to be explored. In this paper, three types of 2d-SiC-based p-n junctions with different doping configuration are modeled. The doping configurations refer to partially replacing carbon with boron or nitrogen atoms along the zigzag or armchair direction, respectively. By employing density functional theory, we calculate the transport properties of the SiC based p-n junctions and obtain negative differential resistance and high rectification ratio. We also find that the junction along the zigzag direction with lower doping density exhibits optimized rectification performance. Our study suggests that 2d-SiC is a promising candidate as a material platform for future nano-devices.

Key words: SiCtransporttwo-dimension



References:

[1]

Bekaroglu E, Topsakal M, Cahangirov S. First-principles studyofdefects andadatomsin siliconcarbide honeycombstructures[J]. Phys Rev B, 2010, 81: 075433. doi: 10.1103/PhysRevB.81.075433

[2]

Wu R, Zhou K, Yue C Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Prog Mater Sci, 2015, 72: 1. doi: 10.1016/j.pmatsci.2015.01.003

[3]

Li X W, Zhou J, Wang Q. Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices[J]. Nanopart Res, 2012, 14: 1056. doi: 10.1007/s11051-012-1056-5

[4]

Lin X, Lin S, Xu Y. Ab initio study of electronic and optical behavior of two-dimensional silicon carbide[J]. J Mater Chem C, 2013, 1: 2131. doi: 10.1039/c3tc00629h

[5]

Lou P J. Effects of edge hydrogenation in zigzag silicon carbide nanoribbons:stability,electronicandmagneticproperties,aswell as spin transport property[J]. J Mater Chem C, 2013, 1: 2996. doi: 10.1039/c3tc30173g

[6]

Lin S S. Light-emitting two-dimensional ultrathin silicon carbide[J]. J Phys Chem C, 2012, 116: 3951. doi: 10.1021/jp210536m

[7]

Ivanov P A, Chelnokov V E. Recent developments in SiC singlecrystal electronics[J]. Semicond Sci Technol, 1992, 7: 863. doi: 10.1088/0268-1242/7/7/001

[8]

Freeman C L, Claeyssens F, Allan N L. Graphitic nanofilms as precursors to wurtzite films:theory[J]. Phys Rev Lett, 2006, 96: 066102. doi: 10.1103/PhysRevLett.96.066102

[9]

Ding Y, Wang Y L. Density functional theory study of the silicene-like SiX and XSi3(X D B, C, N, Al, P) honeycomb lattices:the various buckled structures and versatile electronic properties[J]. J Phys Chem C, 2013, 117: 18266. doi: 10.1021/jp407666m

[10]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 474.

[11]

Lin X, Lin S, Xu Y. Electronic structures of multilayer twodimensional silicon carbide with oriented misalignment[J]. J Mater Chem C, 2015.

[12]

Sahin H, Cahangirov S, Topsakal M. Monolayer honeycomb structures of group-IV elements and Ⅲ-V binary compounds:first-principles calculations[J]. Phys Rev B, 2009, 80: 155453. doi: 10.1103/PhysRevB.80.155453

[13]

Brander R W, Sutton R P. Solution grown SiC p-n junctions[J]. J Phys D, 1969, 2: 309. doi: 10.1088/0022-3727/2/3/301

[14]

Mitlehner H, Friedrichs P, Peters D. Switching behavior of fast high voltage SiC pn-diodes[J]. IEEE Proceedings of the 10th Int Symposium on Power Semiconductor Devices and ICs, 1998: 127.

[15]

Gupta J P, Andrainov A V, Kolodzey J, et al. Injection induced terahertz electroluminescence from 4H-SiC pn-junctions under forward bias. IEEE Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 38th Int. Conference, 2013:1

[16]

Novoselov K S, Geim A K, Morozov S V. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438: 197. doi: 10.1038/nature04233

[17]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183. doi: 10.1038/nmat1849

[18]

Mak K F, Sfeir M Y, Wu Y. Measurement of the optical conductivity of graphene[J]. Phys Rev Lett, 2008, 101: 196405. doi: 10.1103/PhysRevLett.101.196405

[19]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308. doi: 10.1126/science.1156965

[20]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proc Natl Acad Sci USA, 2005, 102: 10451. doi: 10.1073/pnas.0502848102

[21]

Pacilé D, Meyer J C, Girit Ç Ö. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92: 133107. doi: 10.1063/1.2903702

[22]

Meyer J C, Chuvilin A, Algara-Siller G J. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes[J]. Nano Lett, 2009, 9: 2683. doi: 10.1021/nl9011497

[23]

Ji nC, Li nF, SuenagaK , et al. Fabricationofafreestandingboron nitride single layer and its defect assignments[J]. Phys Rev Lett, 2009, 102: 195505. doi: 10.1103/PhysRevLett.102.195505

[24]

Alem N, Erni R, Kisielowski C. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy[J]. Phys Rev B, 2009, 80: 155425. doi: 10.1103/PhysRevB.80.155425

[25]

Fiori G. Negative differential resistance in mono and bilayer graphene pn junctions[J]. IEEE Electron Device Lett, 2011, 32: 1334. doi: 10.1109/LED.2011.2162392

[26]

Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode[J]. Nat Nanotech, 2014, 9: 257. doi: 10.1038/nnano.2014.14

[27]

Baugher B W H, Churchill H H, Yang Y. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nat Nanotech, 2014, 9: 262. doi: 10.1038/nnano.2014.25

[28]

Ross J D, Klement P, Jones A M. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions[J]. Nat Nanotech, 2014, 9: 268. doi: 10.1038/nnano.2014.26

[29]

Kamiyama S, Maeda T, Nakamura Y. Extremely high quantum efficiency of donor-acceptor-pair emission in N-and-Bdoped 6H-SiC[J]. J Appl Phys, 2006, 99: 093108. doi: 10.1063/1.2195883

[30]

Soler J M, Artacho E, Gale J D. The SIESTA method for ab initio order-N materials simulation[J]. J Phys Condens Matter, 2002, 14: 2745. doi: 10.1088/0953-8984/14/11/302

[31]

Brandbyge M, Mozos J L, Ordejon P. Density-functional method for nonequilibrium electron transport[J]. Phys Rev B, 2002, 65: 165401. doi: 10.1103/PhysRevB.65.165401

[32]

Soler J M, Artacho E, Gale J D. The SIESTA method for ab initio order-N materials simulation[J]. J Phys Condens Matter, 2002, 14: 2745. doi: 10.1088/0953-8984/14/11/302

[33]

Zhang D H, Yo K L, Gao G Y. The peculiar transport properties in p-n junctions of doped graphene nanoribbons[J]. J Appl Phys, 2011, 110: 013718. doi: 10.1063/1.3605489

[34]

Bjork M T, Ohlsson B J, Thelander C. Nanowire resonant tunneling diodes[J]. Appl Phys Lett, 2002, 81: 23.

[35]

Perrin M L, Galan E, Eelkema R. Single-molecule resonant tunneling diode[J]. J Phys Chem C, 2015, 119: 5697. doi: 10.1021/jp512803s

[36]

Liu F, Wang J, Guo H. Negative differential resistance in monolayer WTe2 tunneling transistors[J]. Nanotechnology, 2015, 26: 175201. doi: 10.1088/0957-4484/26/17/175201

[37]

Li J, Guo H, Liu J. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications[J]. Nanoscale Res Lett, 2013, 8: 218. doi: 10.1186/1556-276X-8-218

[38]

Liang Y, Gopalakrishnan K, Griffin P. From DRAM to SRAM with a novel SiGe-based negative differential resistance (NDR) device[J]. IEEE Int Electron Device Meeting, 2005: 959.

[39]

Son N T, Chen W M, Kordina O. Electron effective masses in 4H SiC[J]. Appl Phys Lett, 1995, 66: 1074. doi: 10.1063/1.113576

[1]

Bekaroglu E, Topsakal M, Cahangirov S. First-principles studyofdefects andadatomsin siliconcarbide honeycombstructures[J]. Phys Rev B, 2010, 81: 075433. doi: 10.1103/PhysRevB.81.075433

[2]

Wu R, Zhou K, Yue C Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Prog Mater Sci, 2015, 72: 1. doi: 10.1016/j.pmatsci.2015.01.003

[3]

Li X W, Zhou J, Wang Q. Magnetic properties of two dimensional silicon carbide triangular nanoflakes-based kagome lattices[J]. Nanopart Res, 2012, 14: 1056. doi: 10.1007/s11051-012-1056-5

[4]

Lin X, Lin S, Xu Y. Ab initio study of electronic and optical behavior of two-dimensional silicon carbide[J]. J Mater Chem C, 2013, 1: 2131. doi: 10.1039/c3tc00629h

[5]

Lou P J. Effects of edge hydrogenation in zigzag silicon carbide nanoribbons:stability,electronicandmagneticproperties,aswell as spin transport property[J]. J Mater Chem C, 2013, 1: 2996. doi: 10.1039/c3tc30173g

[6]

Lin S S. Light-emitting two-dimensional ultrathin silicon carbide[J]. J Phys Chem C, 2012, 116: 3951. doi: 10.1021/jp210536m

[7]

Ivanov P A, Chelnokov V E. Recent developments in SiC singlecrystal electronics[J]. Semicond Sci Technol, 1992, 7: 863. doi: 10.1088/0268-1242/7/7/001

[8]

Freeman C L, Claeyssens F, Allan N L. Graphitic nanofilms as precursors to wurtzite films:theory[J]. Phys Rev Lett, 2006, 96: 066102. doi: 10.1103/PhysRevLett.96.066102

[9]

Ding Y, Wang Y L. Density functional theory study of the silicene-like SiX and XSi3(X D B, C, N, Al, P) honeycomb lattices:the various buckled structures and versatile electronic properties[J]. J Phys Chem C, 2013, 117: 18266. doi: 10.1021/jp407666m

[10]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 474.

[11]

Lin X, Lin S, Xu Y. Electronic structures of multilayer twodimensional silicon carbide with oriented misalignment[J]. J Mater Chem C, 2015.

[12]

Sahin H, Cahangirov S, Topsakal M. Monolayer honeycomb structures of group-IV elements and Ⅲ-V binary compounds:first-principles calculations[J]. Phys Rev B, 2009, 80: 155453. doi: 10.1103/PhysRevB.80.155453

[13]

Brander R W, Sutton R P. Solution grown SiC p-n junctions[J]. J Phys D, 1969, 2: 309. doi: 10.1088/0022-3727/2/3/301

[14]

Mitlehner H, Friedrichs P, Peters D. Switching behavior of fast high voltage SiC pn-diodes[J]. IEEE Proceedings of the 10th Int Symposium on Power Semiconductor Devices and ICs, 1998: 127.

[15]

Gupta J P, Andrainov A V, Kolodzey J, et al. Injection induced terahertz electroluminescence from 4H-SiC pn-junctions under forward bias. IEEE Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 38th Int. Conference, 2013:1

[16]

Novoselov K S, Geim A K, Morozov S V. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438: 197. doi: 10.1038/nature04233

[17]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183. doi: 10.1038/nmat1849

[18]

Mak K F, Sfeir M Y, Wu Y. Measurement of the optical conductivity of graphene[J]. Phys Rev Lett, 2008, 101: 196405. doi: 10.1103/PhysRevLett.101.196405

[19]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320: 1308. doi: 10.1126/science.1156965

[20]

Novoselov K S, Jiang D, Schedin F. Two-dimensional atomic crystals[J]. Proc Natl Acad Sci USA, 2005, 102: 10451. doi: 10.1073/pnas.0502848102

[21]

Pacilé D, Meyer J C, Girit Ç Ö. The two-dimensional phase of boron nitride:few-atomic-layer sheets and suspended membranes[J]. Appl Phys Lett, 2008, 92: 133107. doi: 10.1063/1.2903702

[22]

Meyer J C, Chuvilin A, Algara-Siller G J. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes[J]. Nano Lett, 2009, 9: 2683. doi: 10.1021/nl9011497

[23]

Ji nC, Li nF, SuenagaK , et al. Fabricationofafreestandingboron nitride single layer and its defect assignments[J]. Phys Rev Lett, 2009, 102: 195505. doi: 10.1103/PhysRevLett.102.195505

[24]

Alem N, Erni R, Kisielowski C. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy[J]. Phys Rev B, 2009, 80: 155425. doi: 10.1103/PhysRevB.80.155425

[25]

Fiori G. Negative differential resistance in mono and bilayer graphene pn junctions[J]. IEEE Electron Device Lett, 2011, 32: 1334. doi: 10.1109/LED.2011.2162392

[26]

Pospischil A, Furchi M M, Mueller T. Solar-energy conversion and light emission in an atomic monolayer p-n diode[J]. Nat Nanotech, 2014, 9: 257. doi: 10.1038/nnano.2014.14

[27]

Baugher B W H, Churchill H H, Yang Y. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nat Nanotech, 2014, 9: 262. doi: 10.1038/nnano.2014.25

[28]

Ross J D, Klement P, Jones A M. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions[J]. Nat Nanotech, 2014, 9: 268. doi: 10.1038/nnano.2014.26

[29]

Kamiyama S, Maeda T, Nakamura Y. Extremely high quantum efficiency of donor-acceptor-pair emission in N-and-Bdoped 6H-SiC[J]. J Appl Phys, 2006, 99: 093108. doi: 10.1063/1.2195883

[30]

Soler J M, Artacho E, Gale J D. The SIESTA method for ab initio order-N materials simulation[J]. J Phys Condens Matter, 2002, 14: 2745. doi: 10.1088/0953-8984/14/11/302

[31]

Brandbyge M, Mozos J L, Ordejon P. Density-functional method for nonequilibrium electron transport[J]. Phys Rev B, 2002, 65: 165401. doi: 10.1103/PhysRevB.65.165401

[32]

Soler J M, Artacho E, Gale J D. The SIESTA method for ab initio order-N materials simulation[J]. J Phys Condens Matter, 2002, 14: 2745. doi: 10.1088/0953-8984/14/11/302

[33]

Zhang D H, Yo K L, Gao G Y. The peculiar transport properties in p-n junctions of doped graphene nanoribbons[J]. J Appl Phys, 2011, 110: 013718. doi: 10.1063/1.3605489

[34]

Bjork M T, Ohlsson B J, Thelander C. Nanowire resonant tunneling diodes[J]. Appl Phys Lett, 2002, 81: 23.

[35]

Perrin M L, Galan E, Eelkema R. Single-molecule resonant tunneling diode[J]. J Phys Chem C, 2015, 119: 5697. doi: 10.1021/jp512803s

[36]

Liu F, Wang J, Guo H. Negative differential resistance in monolayer WTe2 tunneling transistors[J]. Nanotechnology, 2015, 26: 175201. doi: 10.1088/0957-4484/26/17/175201

[37]

Li J, Guo H, Liu J. GaAs-based resonant tunneling diode (RTD) epitaxy on Si for highly sensitive strain gauge applications[J]. Nanoscale Res Lett, 2013, 8: 218. doi: 10.1186/1556-276X-8-218

[38]

Liang Y, Gopalakrishnan K, Griffin P. From DRAM to SRAM with a novel SiGe-based negative differential resistance (NDR) device[J]. IEEE Int Electron Device Meeting, 2005: 959.

[39]

Son N T, Chen W M, Kordina O. Electron effective masses in 4H SiC[J]. Appl Phys Lett, 1995, 66: 1074. doi: 10.1063/1.113576

[1]

Jiang Shouzhen, Xu Xian'gang, Li Juan, Chen Xiufang, Wang Yingmin, Ning Li'na, Hu Xiaobo, Wang Jiyang, Jiang Minhua. Recent Progress in SiC Monocrystal Growth and Wafer Machining. J. Semicond., 2007, 28(5): 810.

[2]

Tang Xiaoyan, Zhang Yimen, Zhang Yuming, Guo Hui, Zhang Lin. Direct Tunneling Effect in SiC Schottky Contacts. J. Semicond., 2006, 27(1): 174.

[3]

Zhang Lin, Zhang Yimen, Zhang Yuming, Tang Xiaoyan. Ohmic Contact on SiC Using n+ Polysilicon/n+ SiC Heterojunction. J. Semicond., 2006, 27(13): 378.

[4]

Pu Hongbin, Chen Zhiming. Turn-On Mechanism of a Light-Activated SiC Heterojuntion Darlington HBT. J. Semicond., 2005, 26(13): 143.

[5]

Yang Ying, Lin Tao, Chen Zhiming. Effect of Growth Gas Flow Rate on the Defects Density of SiC Single Crystal. J. Semicond., 2008, 29(5): 851.

[6]

Chen Gang. n-Type 4H-SiC Ohmic Contact. J. Semicond., 2005, 26(13): 273.

[7]

Lü Hongliang, Zhang Yimen, Zhang Yuming, Che Yong, Wang Yuehu. Influence of the Trapping Effect on Temperature Characteristics in 4H-SiC MESFETs. J. Semicond., 2008, 29(2): 334.

[8]

Chen Zhiming, Ren Ping, Pu Hongbin. Design and Simulation of a Light-Activated Darlington Transistor Based on a SiCGe/3C-SiC Hetero-Structure. J. Semicond., 2006, 27(2): 254.

[9]

Gao Jinxia, Zhang Yimen, Zhang Yuming. C-V Characteristic Distortion in the Pinch-Off Mode of a Buried Channel MOS Structure in 4H-SiC. J. Semicond., 2006, 27(7): 1259.

[10]

Jia Renxu, Zhang Yimen, Zhang Yuming, Guo Hui. Gas Fluid Modeling of SiC Epitaxial Growth in Chemical Vapor Deposition Processes. J. Semicond., 2007, 28(S1): 541.

[11]

Li Lianbi, Chen Zhiming, Pu Hongbin, Lin Tao, Li Jia, Chen Chunlan, Li Qingmin. Structural Analysis of the SiCGe Epitaxial Layer Grown on SiC Substrate. J. Semicond., 2007, 28(S1): 123.

[12]

Wang Lei, Sun Guosheng, Gao Xin, Zhao Wanshun, Zhang Yongxing, Zeng Yiping, Li Jinmin. LPCVD Homoepitaxial Growth on Off-Axis Si-Face 4H-SiC(0001) Substrates. J. Semicond., 2005, 26(13): 113.

[13]

Olivia M. Berengue, Adenilson J. Chiquito. Direct evidence of traps controlling the carriers transport in SnO2 nanobelts. J. Semicond., 2017, 38(12): 122001. doi: 10.1088/1674-4926/38/12/122001

[14]

Shuxian Wang, Zhihao Yu, Xinran Wang. Electrical contacts to two-dimensional transition-metal dichalcogenides. J. Semicond., 2018, 39(12): 1. doi: 10.1088/1674-4926/39/12/124001

[15]

Wang Qi, Wang Ronghua, Xia Dongmei, Zheng Youdou, Han Ping, Yu Huiqiang, Mei Qin, Xie Zili, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Shi Yi, Zhang Rong. Effect of the Thickness of the Strained Si on Hall Mobility. J. Semicond., 2007, 28(S1): 130.

[16]

Huang Limin, Xie Jiachun, Liang Jin. High Quality Ultraviolet Photodetectors Based on Silicon Carbide. J. Semicond., 2005, 26(13): 256.

[17]

Zhang Fasheng, Li Xinran. Mo/Schottky Barrier Diodes on 4H-Silicon Carbide. J. Semicond., 2007, 28(3): 435.

[18]

Chen Sheng, , Li Zhihong, Zhang Guobing, Guo Hui, Wang Yu. Etching Characteristics of PECVD SiC. J. Semicond., 2006, 27(13): 381.

[19]

Y. K. Sharma, Huaping Jiang, Changwei Zheng, Xiaoping Dai, Yangang Wang, I. Deviny. Impact of design and process variation on the fabrication of SiC diodes. J. Semicond., 2018, 39(11): 114001. doi: 10.1088/1674-4926/39/11/114001

[20]

Lin Tao, Li Qingmin, Li Lianbi, Yang Ying, Chen Zhiming. A Structural Investigation of 3C-SiC Film Hetero-Epitaxial Grown on 6H-SiC Substrate. J. Semicond., 2008, 29(5): 936.

Search

Advanced Search >>

GET CITATION

H M Zhou, X Lin, H W Guo, S S Lin, Y W Sun, Y Xu. Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions[J]. J. Semicond., 2017, 38(3): 033002. doi: 10.1088/1674-4926/38/3/033002.

Export: BibTex EndNote

Article Metrics

Article views: 296 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 05 October 2016 Manuscript revised: 02 November 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误