J. Semicond. > Volume 38 > Issue 3 > Article Number: 033003

Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging

Yuanfang Yu , Zhenzhen Li , Wenhui Wang , Xitao Guo , Jie Jiang , Haiyan Nan , and Zhenhua Ni ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield. However, multi-layer domains could inevitably form at the nucleation centers during the growth. Here, we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene. We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging. Finally, we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene, and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains. Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene.

Key words: CVD graphenemultilayer domainoptical contrast imagingmobility

Abstract: CVD graphene is a promising candidate for optoelectronic applications due to its high quality and high yield. However, multi-layer domains could inevitably form at the nucleation centers during the growth. Here, we propose an optical imaging technique to precisely identify the multilayer domains and also the ratio of their coverage in large-scale CVD monolayer graphene. We have also shown that the stacking disorder in twisted bilayer graphene as well as the impurities on the graphene surface could be distinguished by optical imaging. Finally, we investigated the effects of bilayer domains on the optical and electrical properties of CVD graphene, and found that the carrier mobility of CVD graphene is seriously limited by scattering from bilayer domains. Our results could be useful for guiding future optoelectronic applications of large-scale CVD graphene.

Key words: CVD graphenemultilayer domainoptical contrast imagingmobility



References:

[1]

Li X S, Cai W W, An J H. Large-area synthesis of highquality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312. doi: 10.1126/science.1171245

[2]

Liu L X, Zhou H L, Cheng R. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene[J]. ACS Nano, 2012, 6(9): 8241. doi: 10.1021/nn302918x

[3]

Yan W, Liu M X, Dou R F. Angle-dependent van hove singularities in a slightly twisted graphene bilayer[J]. Phys Rev Lett, 2012, 109(12): 126801. doi: 10.1103/PhysRevLett.109.126801

[4]

Havener R W, Liang Y F, Brown L. Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene[J]. Nano Lett, 2014, 14(6): 3353. doi: 10.1021/nl500823k

[5]

Liao L, Wang H, Peng H. Van Hove singularity enhanced photochemical reactivity of twisted bilayer graphene[J]. Nano Lett, 2015, 15(8): 5585. doi: 10.1021/acs.nanolett.5b02240

[6]

Wang Y Y, Ni Z H, Liu L. Stacking-dependent optical conductivity of bilayer graphene[J]. ACS Nano, 2010, 4(7): 4074. doi: 10.1021/nn1004974

[7]

Chen Y M, Meng L J, Zhao W W. Raman mapping investigation of chemical vapor deposition-fabricated twisted bilayer graphene with irregular grains[J]. Phys Chem Chem Phys, 2014, 16(39): 21682. doi: 10.1039/C4CP03386H

[8]

Havener R W, Zhuang H L, Brown L. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene[J]. Nano Lett, 2012, 12(6): 3162. doi: 10.1021/nl301137k

[9]

Righi A, Venezuela P, Chacham H. Resonance Raman spectroscopy in twisted bilayer graphene[J]. Solid State Commun, 2013, 175: 13.

[10]

Yeh C H, Lin Y C, Nayak P K. Probing interlayer coupling in twisted single-crystal bilayer graphene by Raman spectroscopy[J]. J Raman Spectrosc, 2014, 45(10): 912. doi: 10.1002/jrs.4571

[11]

Brown L, Hovden R, Huang P. Twinning and twisting of tri-and bilayer graphene[J]. Nano Lett, 2012, 12(3): 1609. doi: 10.1021/nl204547v

[12]

Lu C C, Lin Y C, Liu Z. Twisting bilayer graphene superlattices[J]. ACS Nano, 2013, 7(3): 2587. doi: 10.1021/nn3059828

[13]

Brihuega I, Mallet P, Gonzàez-Herrero H. Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis[J]. Phys Rev Lett, 2012, 109(19): 196802. doi: 10.1103/PhysRevLett.109.196802

[14]

Nolen C M, Denina G, Teweldebrhan D. High-throughput large-area automated identification and quality control of graphene and few-layer graphene films[J]. ACS Nano, 2011, 5(2): 914. doi: 10.1021/nn102107b

[15]

Campos-Delgado J, Algara-Siller G, Santos C N. Twisted bi-layer graphene:microscopic rainbows[J]. Small, 2013, 9(19): 3247.

[16]

Ni Z H, Wang H M, Kasim J. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano Lett, 2007, 7(9): 2758. doi: 10.1021/nl071254m

[17]

Liu Y L, Nan H Y, Wu X. Layer-by-layer thinning of MoS2 by plasma[J]. ACS Nano, 2013, 7(5): 4202. doi: 10.1021/nn400644t

[18]

Wang Y Y, Gao R X, Ni Z H. Thickness identification of two-dimensional materials by optical imaging[J]. Nanotechnology, 2012, 23(49): 495713. doi: 10.1088/0957-4484/23/49/495713

[19]

Graf D, Molitor F, Ensslin K. Spatially resolved Raman spectroscopy of single- and few-layer graphene[J]. Nano Lett, 2007, 7(2): 238. doi: 10.1021/nl061702a

[20]

Ni Z H, Wang Y Y, Yu T. Raman spectroscopy and imaging of graphene[J]. Nano Res, 2008, 1(4): 273. doi: 10.1007/s12274-008-8036-1

[21]

Kim K, Coh S, Tan L Z. Raman spectroscopy study of rotated double-layer graphene:misorientation-angle dependence of electronic structure[J]. Phys Rev Lett, 2012, 108(24): 246103. doi: 10.1103/PhysRevLett.108.246103

[22]

Kang J, Shin D, Bae S. Graphene transfer:key for applications[J]. Nanoscale, 2012, 4(18): 5527. doi: 10.1039/c2nr31317k

[23]

Gong C, Floresca H C, Hinojos D. Rapid selective etching of PMMA residues from transferred graphene by carbon dioxide[J]. J Phys Chem C, 2013, 117(44): 23000. doi: 10.1021/jp408429v

[24]

Ferrari A C, Robertson J. Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond[J]. Phys Rev B, 2001, 63(12): 121405. doi: 10.1103/PhysRevB.63.121405

[25]

Lin Y C, Lu C C, Yeh C H. Graphene annealing:how clean can it be[J]. Nano Lett, 2012, 12(1): 414. doi: 10.1021/nl203733r

[26]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965

[27]

Zhong H, Zhang Z Y, Xu H T. Comparison of mobility extraction methods based on field-effect measurements for graphene[J]. AIP Adv, 2015, 5(5): 057136. doi: 10.1063/1.4921400

[28]

Suk J W, Lee W H, Lee J. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue[J]. Nano Lett, 2013, 13(4): 1462. doi: 10.1021/nl304420b

[29]

Adam S, Hwang E H, Galitski V M. A self-consistent theory for graphene transport[J]. Proceedings of the National Academy of Sciences, 2007, 104(47): 18392. doi: 10.1073/pnas.0704772104

[30]

Nagashio K, Nishimura T, Kita K. Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor[J]. Jpn J Appl Phys, 2010, 49(5R): 051304.

[1]

Li X S, Cai W W, An J H. Large-area synthesis of highquality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312. doi: 10.1126/science.1171245

[2]

Liu L X, Zhou H L, Cheng R. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene[J]. ACS Nano, 2012, 6(9): 8241. doi: 10.1021/nn302918x

[3]

Yan W, Liu M X, Dou R F. Angle-dependent van hove singularities in a slightly twisted graphene bilayer[J]. Phys Rev Lett, 2012, 109(12): 126801. doi: 10.1103/PhysRevLett.109.126801

[4]

Havener R W, Liang Y F, Brown L. Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene[J]. Nano Lett, 2014, 14(6): 3353. doi: 10.1021/nl500823k

[5]

Liao L, Wang H, Peng H. Van Hove singularity enhanced photochemical reactivity of twisted bilayer graphene[J]. Nano Lett, 2015, 15(8): 5585. doi: 10.1021/acs.nanolett.5b02240

[6]

Wang Y Y, Ni Z H, Liu L. Stacking-dependent optical conductivity of bilayer graphene[J]. ACS Nano, 2010, 4(7): 4074. doi: 10.1021/nn1004974

[7]

Chen Y M, Meng L J, Zhao W W. Raman mapping investigation of chemical vapor deposition-fabricated twisted bilayer graphene with irregular grains[J]. Phys Chem Chem Phys, 2014, 16(39): 21682. doi: 10.1039/C4CP03386H

[8]

Havener R W, Zhuang H L, Brown L. Angle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene[J]. Nano Lett, 2012, 12(6): 3162. doi: 10.1021/nl301137k

[9]

Righi A, Venezuela P, Chacham H. Resonance Raman spectroscopy in twisted bilayer graphene[J]. Solid State Commun, 2013, 175: 13.

[10]

Yeh C H, Lin Y C, Nayak P K. Probing interlayer coupling in twisted single-crystal bilayer graphene by Raman spectroscopy[J]. J Raman Spectrosc, 2014, 45(10): 912. doi: 10.1002/jrs.4571

[11]

Brown L, Hovden R, Huang P. Twinning and twisting of tri-and bilayer graphene[J]. Nano Lett, 2012, 12(3): 1609. doi: 10.1021/nl204547v

[12]

Lu C C, Lin Y C, Liu Z. Twisting bilayer graphene superlattices[J]. ACS Nano, 2013, 7(3): 2587. doi: 10.1021/nn3059828

[13]

Brihuega I, Mallet P, Gonzàez-Herrero H. Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis[J]. Phys Rev Lett, 2012, 109(19): 196802. doi: 10.1103/PhysRevLett.109.196802

[14]

Nolen C M, Denina G, Teweldebrhan D. High-throughput large-area automated identification and quality control of graphene and few-layer graphene films[J]. ACS Nano, 2011, 5(2): 914. doi: 10.1021/nn102107b

[15]

Campos-Delgado J, Algara-Siller G, Santos C N. Twisted bi-layer graphene:microscopic rainbows[J]. Small, 2013, 9(19): 3247.

[16]

Ni Z H, Wang H M, Kasim J. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano Lett, 2007, 7(9): 2758. doi: 10.1021/nl071254m

[17]

Liu Y L, Nan H Y, Wu X. Layer-by-layer thinning of MoS2 by plasma[J]. ACS Nano, 2013, 7(5): 4202. doi: 10.1021/nn400644t

[18]

Wang Y Y, Gao R X, Ni Z H. Thickness identification of two-dimensional materials by optical imaging[J]. Nanotechnology, 2012, 23(49): 495713. doi: 10.1088/0957-4484/23/49/495713

[19]

Graf D, Molitor F, Ensslin K. Spatially resolved Raman spectroscopy of single- and few-layer graphene[J]. Nano Lett, 2007, 7(2): 238. doi: 10.1021/nl061702a

[20]

Ni Z H, Wang Y Y, Yu T. Raman spectroscopy and imaging of graphene[J]. Nano Res, 2008, 1(4): 273. doi: 10.1007/s12274-008-8036-1

[21]

Kim K, Coh S, Tan L Z. Raman spectroscopy study of rotated double-layer graphene:misorientation-angle dependence of electronic structure[J]. Phys Rev Lett, 2012, 108(24): 246103. doi: 10.1103/PhysRevLett.108.246103

[22]

Kang J, Shin D, Bae S. Graphene transfer:key for applications[J]. Nanoscale, 2012, 4(18): 5527. doi: 10.1039/c2nr31317k

[23]

Gong C, Floresca H C, Hinojos D. Rapid selective etching of PMMA residues from transferred graphene by carbon dioxide[J]. J Phys Chem C, 2013, 117(44): 23000. doi: 10.1021/jp408429v

[24]

Ferrari A C, Robertson J. Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond[J]. Phys Rev B, 2001, 63(12): 121405. doi: 10.1103/PhysRevB.63.121405

[25]

Lin Y C, Lu C C, Yeh C H. Graphene annealing:how clean can it be[J]. Nano Lett, 2012, 12(1): 414. doi: 10.1021/nl203733r

[26]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965

[27]

Zhong H, Zhang Z Y, Xu H T. Comparison of mobility extraction methods based on field-effect measurements for graphene[J]. AIP Adv, 2015, 5(5): 057136. doi: 10.1063/1.4921400

[28]

Suk J W, Lee W H, Lee J. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue[J]. Nano Lett, 2013, 13(4): 1462. doi: 10.1021/nl304420b

[29]

Adam S, Hwang E H, Galitski V M. A self-consistent theory for graphene transport[J]. Proceedings of the National Academy of Sciences, 2007, 104(47): 18392. doi: 10.1073/pnas.0704772104

[30]

Nagashio K, Nishimura T, Kita K. Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor[J]. Jpn J Appl Phys, 2010, 49(5R): 051304.

js-38-3-033003.pdf

[1]

Liu Hongwei, Wang Runsheng, Huang Ru, Zhang Xing. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs. J. Semicond., 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006

[2]

Gao Jinxia, Zhang Yimen, Zhang Yuming. Study of Electron Mobility in 4H-SiC Buried-Channel MOSFETs. J. Semicond., 2006, 27(2): 283.

[3]

Zhao Ji, Zou Jianping, Tan Yaohua, Yu Zhiping. k·p and Monte Carlo Studies of Hole Mobility in Strained-Si pMOS Inversion Layers. J. Semicond., 2006, 27(12): 2144.

[4]

Jianjun Song, He Zhu, Jinyong Yang, Heming Zhang, Rongxi Xuan, Huiyong Hu. Averaged hole mobility model of biaxially strained Si. J. Semicond., 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003

[5]

Congwei Liao. Mobility impact on compensation performance of AMOLED pixel circuit using IGZO TFTs. J. Semicond., 2019, 40(2): 022403. doi: 10.1088/1674-4926/40/2/022403

[6]

A. Bhattacharjee, T.R. Lenka. Performance analysis of 20 nm gate-length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio. J. Semicond., 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

[7]

Bo Liu, Jiayun Yin, Yuanjie Lü, Shaobo Dun, Xiongwen Zhang, Zhihong Feng, Shujun Cai. Unstrained InAlN/GaN heterostructures grown on sapphire substrates by MOCVD. J. Semicond., 2014, 35(11): 113005. doi: 10.1088/1674-4926/35/11/113005

[8]

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[9]

Amit Chaudhry, J. N. Roy, Garima Joshi. Nanoscale strained-Si MOSFET physics and modeling approaches: a review. J. Semicond., 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001

[10]

N Divya Bharathi, K Sivasankaran. Research progress and challenges of two dimensional MoS2 field effect transistors. J. Semicond., 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002

[11]

Bowen Zhang, Xiaoling Zhang, Wenwen Xiong, Shuojie She, Xuesong Xie. The investigation of the zero temperature coefficient point of power MOSFET. J. Semicond., 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011

[12]

Xiao Hongling, Wang Xiaoliang, Yang Cuibai, Hu Guoxin, Ran Junxue, Wang Cuimei, Zhang Xiaobin, Li Jianping, Li Jinmin. MOCVD Growth of InN Films on Sapphire Substrates. J. Semicond., 2007, 28(S1): 260.

[13]

Bai Yu, Khizar-ul-Haq, M.A.Khan, Jiang Xueyin, Zhang Zhilin. OTFT with Bilayer Gate Insulator and Modificative Electrode. J. Semicond., 2008, 29(4): 650.

[14]

Na Ye, Zhiming Chen, Longfei Xie. A feasibility study on SiC optoinjected CCD with buried channels. J. Semicond., 2013, 34(11): 114014. doi: 10.1088/1674-4926/34/11/114014

[15]

Xiao Jin, Hong Zhang, Rongxiu Zhou, Zhao Jin. Interface roughness scattering in an AlGaAs/GaAs triangle quantum well and square quantum well. J. Semicond., 2013, 34(7): 072004. doi: 10.1088/1674-4926/34/7/072004

[16]

Sun Ling, Liu Wei, Duan Zhenyong, Xu Zhongyi, Yang Huayue. Electrical Characteristics and Reliability of Ultra-Thin Gate Oxides (<2nm) with Plasma Nitridation. J. Semicond., 2008, 29(11): 2143.

[17]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[18]

Zhou Xiaojuan, Ban Shiliang. Influence of optical phonons on the electronic mobility in a strained wurtzite AlN/GaN heterojunction under hydrostatic pressure. J. Semicond., 2009, 30(8): 082001. doi: 10.1088/1674-4926/30/8/082001

[19]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[20]

Gui Yang, Yufeng Zhang, Xunwang Yan. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide. J. Semicond., 2013, 34(8): 083004. doi: 10.1088/1674-4926/34/8/083004

Search

Advanced Search >>

GET CITATION

Y F Yu, Z Z Li, W H Wang, X T Guo, J Jiang, H Y Nan, Z H Ni. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging[J]. J. Semicond., 2017, 38(3): 033003. doi: 10.1088/1674-4926/38/3/033003.

Export: BibTex EndNote

Article Metrics

Article views: 1324 Times PDF downloads: 47 Times Cited by: 0 Times

History

Manuscript received: 02 November 2016 Manuscript revised: 30 December 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误