J. Semicond. > Volume 38 > Issue 3 > Article Number: 033005

Carbon-doping-induced negative differential resistance in armchair phosphorene nanoribbons

Caixia Guo , Congxin Xia , , Tianxing Wang and Yufang Liu

+ Author Affilications + Find other works by these authors

PDF

Abstract: By using a combined method of density functional theory and non-equilibrium Green's function formalism, we investigate the electronic transport properties of carbon-doped armchair phosphorene nanoribbons (APNRs). The results show that C atom doping can strongly affect the electronic transport properties of the APNR and change it from semiconductor to metal. Meanwhile, obvious negative differential resistance (NDR) behaviors are obtained by tuning the doping position and concentration. In particular, with reducing doping concentration, NDR peak position can enter into mV bias range. These results provide a theoretical support to design the related nanodevice by tuning the doping position and concentration in the APNRs.

Key words: C atom dopingarmchair phosphorene nanoribbonnegative differential resistance behavior

Abstract: By using a combined method of density functional theory and non-equilibrium Green's function formalism, we investigate the electronic transport properties of carbon-doped armchair phosphorene nanoribbons (APNRs). The results show that C atom doping can strongly affect the electronic transport properties of the APNR and change it from semiconductor to metal. Meanwhile, obvious negative differential resistance (NDR) behaviors are obtained by tuning the doping position and concentration. In particular, with reducing doping concentration, NDR peak position can enter into mV bias range. These results provide a theoretical support to design the related nanodevice by tuning the doping position and concentration in the APNRs.

Key words: C atom dopingarmchair phosphorene nanoribbonnegative differential resistance behavior



References:

[1]

Li K, Yu Y, Guo J. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372. doi: 10.1038/nnano.2014.35

[2]

Nathaniel G, Darshana W, Shi Y. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures[J]. 2D Mater, 2015, 2: 011001.

[3]

Qiao J, Kong X H, Hu Z X. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nat Commun, 2014, 5: 4475.

[4]

Zhang C, Xiang G, Lan M. Homostructured negative differential resistance device based on zigzag phosphorene nanoribbons[J]. RSC Adv, 2015, 5(50): 40358. doi: 10.1039/C5RA04056F

[5]

Brown E R, Söderström J R, Parker C D. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes[J]. Appl Phys Lett, 1991, 58(20): 2291. doi: 10.1063/1.104902

[6]

Broekaert T P, Brar B, Van der Wagt J P A. A monolithic 4- bit 2-Gsps resonant tunneling analog-to-digital converter[J]. IEEE J Solid-State Circuits, 1998, 33(9): 1342. doi: 10.1109/4.711333

[7]

Büttiker M, Imry Y, Landauer R. Generalized many-channel conductance formula with application to small rings[J]. Phys Rev B, 1985, 31(10): 6207. doi: 10.1103/PhysRevB.31.6207

[8]

Rommel S L, Dillon T E, Berger P R. Si-based interband tunneling devices for high-speed logic and low power memory applications[J]. International Electron Devices Meeting, 1998: 1035.

[9]

An Y P, Wei X, Yang Z. Improving electronic transport of zigzag graphene nanoribbons by ordered doping of B or N atoms[J]. Phys Chem Chem Phys, 2012, 14(45): 15802. doi: 10.1039/c2cp42123b

[10]

Liu N, Liu J B, Gao G Y. Carbon doping induced giant low bias negative differential resistance in boron nitride nanoribbon[J]. Phys Lett A, 2014, 378(30/31): 2217.

[11]

Pramanik A, Sarkar S, Sarkar P. Doped GNR p-n junction as high performance NDR and rectifying device[J]. J Phys Chem C, 2012, 116(34): 18064. doi: 10.1021/jp304582k

[12]

Hao R, Li Q, Luo Y. Graphene nanoribbon as a negative differential resistance device[J]. Appl Phys Lett, 2009, 94(17): 173110. doi: 10.1063/1.3126451

[13]

Zhao P, Liu D S, Li S J. Giant low bias negative differential resistance induced by nitrogen doping in graphene nanoribbon[J]. Chem Phys Lett, 2012, 554: 172. doi: 10.1016/j.cplett.2012.10.045

[14]

Zhao P, Liu D S, Liu H Y. Low bias negative differential resistance in C60 dimer modulated by gate voltage[J]. Organ Electron, 2013, 14(4): 1109. doi: 10.1016/j.orgel.2013.01.034

[15]

Min Y, Yao K L, Fu H H. First-principles study of strong rectification and negative differential resistance induced by charge distribution in single molecule[J]. J Chem Phys, 2010, 132(21): 214703. doi: 10.1063/1.3447380

[16]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. doi: 10.1103/PhysRevLett.77.3865

[17]

Yu W, Zhu Z, Niu C Y. Anomalous doping effect in black phosphorene using first-principles calculations[J]. Phys Chem Chem Phys, 2015, 17(25): 16351. doi: 10.1039/C5CP01732G

[18]

Li W, Zhang G, Zhang Y W. Electronic properties of edgehydrogenated phosphorene nanoribbons:a first-principles study[J]. J Phys Chem C, 2014, 118(38): 22368. doi: 10.1021/jp506996a

[19]

Fei R, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus[J]. Nano Lett, 2014, 14(5): 2884. doi: 10.1021/nl500935z

[20]

Guo C X, Xia C X, Fang L Z. Tuning anisotropic electronic transport properties of phosphorene via substitutional doping[J]. Phys Chem Chem Phys, 2016, 18: 25869. doi: 10.1039/C6CP04508A

[21]

Wu Y, Wang Y, Wang J. Electrical transport across metal=two-dimensional carbon junctions:edge versus side contacts[J]. AIP Adv, 2012, 2(1): 012132. doi: 10.1063/1.3684617

[1]

Li K, Yu Y, Guo J. Black phosphorus field-effect transistors[J]. Nat Nanotechnol, 2014, 9(5): 372. doi: 10.1038/nnano.2014.35

[2]

Nathaniel G, Darshana W, Shi Y. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures[J]. 2D Mater, 2015, 2: 011001.

[3]

Qiao J, Kong X H, Hu Z X. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nat Commun, 2014, 5: 4475.

[4]

Zhang C, Xiang G, Lan M. Homostructured negative differential resistance device based on zigzag phosphorene nanoribbons[J]. RSC Adv, 2015, 5(50): 40358. doi: 10.1039/C5RA04056F

[5]

Brown E R, Söderström J R, Parker C D. Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes[J]. Appl Phys Lett, 1991, 58(20): 2291. doi: 10.1063/1.104902

[6]

Broekaert T P, Brar B, Van der Wagt J P A. A monolithic 4- bit 2-Gsps resonant tunneling analog-to-digital converter[J]. IEEE J Solid-State Circuits, 1998, 33(9): 1342. doi: 10.1109/4.711333

[7]

Büttiker M, Imry Y, Landauer R. Generalized many-channel conductance formula with application to small rings[J]. Phys Rev B, 1985, 31(10): 6207. doi: 10.1103/PhysRevB.31.6207

[8]

Rommel S L, Dillon T E, Berger P R. Si-based interband tunneling devices for high-speed logic and low power memory applications[J]. International Electron Devices Meeting, 1998: 1035.

[9]

An Y P, Wei X, Yang Z. Improving electronic transport of zigzag graphene nanoribbons by ordered doping of B or N atoms[J]. Phys Chem Chem Phys, 2012, 14(45): 15802. doi: 10.1039/c2cp42123b

[10]

Liu N, Liu J B, Gao G Y. Carbon doping induced giant low bias negative differential resistance in boron nitride nanoribbon[J]. Phys Lett A, 2014, 378(30/31): 2217.

[11]

Pramanik A, Sarkar S, Sarkar P. Doped GNR p-n junction as high performance NDR and rectifying device[J]. J Phys Chem C, 2012, 116(34): 18064. doi: 10.1021/jp304582k

[12]

Hao R, Li Q, Luo Y. Graphene nanoribbon as a negative differential resistance device[J]. Appl Phys Lett, 2009, 94(17): 173110. doi: 10.1063/1.3126451

[13]

Zhao P, Liu D S, Li S J. Giant low bias negative differential resistance induced by nitrogen doping in graphene nanoribbon[J]. Chem Phys Lett, 2012, 554: 172. doi: 10.1016/j.cplett.2012.10.045

[14]

Zhao P, Liu D S, Liu H Y. Low bias negative differential resistance in C60 dimer modulated by gate voltage[J]. Organ Electron, 2013, 14(4): 1109. doi: 10.1016/j.orgel.2013.01.034

[15]

Min Y, Yao K L, Fu H H. First-principles study of strong rectification and negative differential resistance induced by charge distribution in single molecule[J]. J Chem Phys, 2010, 132(21): 214703. doi: 10.1063/1.3447380

[16]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. doi: 10.1103/PhysRevLett.77.3865

[17]

Yu W, Zhu Z, Niu C Y. Anomalous doping effect in black phosphorene using first-principles calculations[J]. Phys Chem Chem Phys, 2015, 17(25): 16351. doi: 10.1039/C5CP01732G

[18]

Li W, Zhang G, Zhang Y W. Electronic properties of edgehydrogenated phosphorene nanoribbons:a first-principles study[J]. J Phys Chem C, 2014, 118(38): 22368. doi: 10.1021/jp506996a

[19]

Fei R, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus[J]. Nano Lett, 2014, 14(5): 2884. doi: 10.1021/nl500935z

[20]

Guo C X, Xia C X, Fang L Z. Tuning anisotropic electronic transport properties of phosphorene via substitutional doping[J]. Phys Chem Chem Phys, 2016, 18: 25869. doi: 10.1039/C6CP04508A

[21]

Wu Y, Wang Y, Wang J. Electrical transport across metal=two-dimensional carbon junctions:edge versus side contacts[J]. AIP Adv, 2012, 2(1): 012132. doi: 10.1063/1.3684617

[1]

Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin. Negative differential resistance in an (8, 0) carbon/boron nitride nanotube heterojunction. J. Semicond., 2011, 32(4): 042003. doi: 10.1088/1674-4926/32/4/042003

[2]

Bahniman Ghosh, Aayush Gupta. Effect of defects on the electronic properties of WS2 armchair nanoribbon. J. Semicond., 2015, 36(1): 013003. doi: 10.1088/1674-4926/36/1/013003

[3]

Wenliang Zhang, Yangjun Zhu, Shuojin Lu, Xiaoli Tian. The negative differential resistance characteristics of an RC-IGBT and its equivalent circuit model. J. Semicond., 2014, 35(2): 024008. doi: 10.1088/1674-4926/35/2/024008

[4]

Luo Ping, Li Zhaoji, Yu Lei, Zhang Bo. A Novel High Output Resistance Current Source Based on Negative Resistance. J. Semicond., 2006, 27(3): 443.

[5]

Wei Wang, Gongshu Yue, Xiao Yang, Lu Zhang, Ting Zhang. Quantum simulation study of double gate hetero gate dielectric and LDD doping graphene nanoribbon p-i-n tunneling FETs. J. Semicond., 2014, 35(6): 064006. doi: 10.1088/1674-4926/35/6/064006

[6]

K. Bekhouche, N. Sengouga, B. K. Jones. Numerical simulation of the effect of gold doping on the resistance to neutron irradiation of silicon diodes. J. Semicond., 2015, 36(1): 014001. doi: 10.1088/1674-4926/36/1/014001

[7]

Jiahua Zhang, Da Chen, Shihua Huang. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device. J. Semicond., 2017, 38(12): 122003. doi: 10.1088/1674-4926/38/12/122003

[8]

Cheng Xin, Zhong Lungui, Yang Haigang, Liu Fei, Gao Tongqiang. A pseudo differential GmC complex filter with frequency tuning for IEEE802.15.4 applications. J. Semicond., 2011, 32(7): 075005. doi: 10.1088/1674-4926/32/7/075005

[9]

Ji Tao, Yang Licheng, Li Hairong, He Shanhu, Li Siyuan. Photo-sensitive characteristics of negative resistance turn-around occurring in SIPTH. J. Semicond., 2009, 30(4): 044006. doi: 10.1088/1674-4926/30/4/044006

[10]

Wang Xiantai, Jin Zhi, Wu Danyu, Shen Huajun, Liu Xinyu. A 10 GHz high-effciency and low phase-noise negative-resistance oscillator optimized with a virtual loop model. J. Semicond., 2009, 30(11): 115001. doi: 10.1088/1674-4926/30/11/115001

[11]

Li Hairong, Li Siyuan. A novel method for measuring carrier lifetime and capture cross-section by using the negative resistance I–V characteristics of a barrier-type thyristor. J. Semicond., 2010, 31(8): 084005. doi: 10.1088/1674-4926/31/8/084005

[12]

Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin, Zhang Zhiyong. Electronic transport properties of the armchair silicon carbide nanotube. J. Semicond., 2010, 31(11): 114003. doi: 10.1088/1674-4926/31/11/114003

[13]

Liu Airong, Yang Huazhong. A 1V,156.7μW,65.9dB Rail-to-Rail Operational Amplifier by Means of Negative Resistance Load and Replica-Amplifier Gain Enhancement. J. Semicond., 2006, 27(12): 2101.

[14]

Bahniman Ghosh, Abhishek Gupta, Bhupesh Bishnoi. Effects of defects on the electronic properties of WTe2 armchair nanoribbons. J. Semicond., 2014, 35(11): 113002. doi: 10.1088/1674-4926/35/11/113002

[15]

An Liping, Liu Nianhua. Electronic structures and transport properties of BN nanodot superlattices of armchair graphene nanoribbons. J. Semicond., 2011, 32(9): 092002. doi: 10.1088/1674-4926/32/9/092002

[16]

Zhang Jianmin, Xu Guigui, Wu Qingyun, Chen Zhigao, Huang Zhigao. Stability and vibrational properties of the hydrogen atom for p-type AlN doped with group-II: a first-principles study. J. Semicond., 2010, 31(6): 062001. doi: 10.1088/1674-4926/31/6/062001

[17]

An Liping, Liu Nianhua. First-principles study on transport properties of zigzag graphene nanoribbon with different spin-configurations. J. Semicond., 2011, 32(5): 052001. doi: 10.1088/1674-4926/32/5/052001

[18]

Endi Suhendi, Lilik Hasanah, Dadi Rusdiana, Fatimah A. Noor, Neny Kurniasih, Khairurrijal. Comparison of tunneling currents in graphene nanoribbon tunnel field effect transistors calculated using Dirac-like equation and Schrödinger's equation. J. Semicond., 2019, 40(6): 062002. doi: 10.1088/1674-4926/40/6/062002

[19]

Shuai Feng, Lichuan Zhao, Qingzhu Zhang, Pengpeng Yang, Zhaoyun Tang, Cinan Wu, Jiang Yan. A simulation analysis of performance of both implanted doping and in situ doping ETSOI PMOSFETs. J. Semicond., 2015, 36(4): 046001. doi: 10.1088/1674-4926/36/4/046001

[20]

Cheng Buwen, Yao Fei, Xue Chunlai, Zhang Jianguo, Li Chuanbo, Mao Rongwei, Zuo Yuhua, Luo Liping, Wang Qiming. Strain Compensation in SiGe by Boron Doping. J. Semicond., 2005, 26(S1): 39.

Search

Advanced Search >>

GET CITATION

C X Guo, C X Xia, T X Wang, Y F Liu. Carbon-doping-induced negative differential resistance in armchair phosphorene nanoribbons[J]. J. Semicond., 2017, 38(3): 033005. doi: 10.1088/1674-4926/38/3/033005.

Export: BibTex EndNote

Article Metrics

Article views: 971 Times PDF downloads: 17 Times Cited by: 0 Times

History

Manuscript received: 28 September 2016 Manuscript revised: 15 December 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误