J. Semicond. > Volume 38 > Issue 3 > Article Number: 034002

Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor

Fengjing Liu 1, 2, , Jiawei Wang 2, , Liang Wang 2, , Xiaoyong Cai 2, , Chao Jiang 2, , and Gongtang Wang 1, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Perovskite/MoS2 hybrid thin film transistor photodetectors consist of few-layered MoS2 and CH3NH3PbI3 film with various thickness prepared by two-step vacuum deposition. By implementing perovskite CH3NH3PbI3 film onto the MoS2 flake, the perovskite/MoS2 hybrid photodetector exhibited a photoresponsivity of 104A/W and fast response time of about 40 ms. Improvement of photodetection performance is attributed to the balance between light absorption in the perovskite layer and an effective transfer of photogenerated carriers from perovskite entering the MoS2 channel. This work may provide guidance to develop high-performance hybrid structure optoelectronic devices.

Key words: perovskiteMoS2photodetector

Abstract: Perovskite/MoS2 hybrid thin film transistor photodetectors consist of few-layered MoS2 and CH3NH3PbI3 film with various thickness prepared by two-step vacuum deposition. By implementing perovskite CH3NH3PbI3 film onto the MoS2 flake, the perovskite/MoS2 hybrid photodetector exhibited a photoresponsivity of 104A/W and fast response time of about 40 ms. Improvement of photodetection performance is attributed to the balance between light absorption in the perovskite layer and an effective transfer of photogenerated carriers from perovskite entering the MoS2 channel. This work may provide guidance to develop high-performance hybrid structure optoelectronic devices.

Key words: perovskiteMoS2photodetector



References:

[1]

Sangwan V K, Jariwala D, Kim I S. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2[J]. Nat Nanotech, 2015, 10(5): 403. doi: 10.1038/nnano.2015.56

[2]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotech, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[3]

Gong Y J, Lin J H, Wang X L. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nat Mater, 2014, 13(12): 1135. doi: 10.1038/nmat4091

[4]

Liu Y, Weiss N O, Duan X. Van der Waals heterostructures and devices[J]. Nat Rev Mater, 2016: 16042.

[5]

Li X, Lin M W, Lin J. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy[J]. Sci Adv, 2016, 2(4).

[6]

Kim S, Konar A, Hwang W S. High-mobility and lowpower thin-film transistors based on multilayer MoS2 crystals[J]. Nat Commun, 2012, 3: 1011. doi: 10.1038/ncomms2018

[7]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotech, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[8]

Choi W, Cho M Y, Konar A. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J]. Adv Mater, 2012, 24(43): 5832. doi: 10.1002/adma.201201909

[9]

Yu S H, Lee Y, Jang S K. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse[J]. ACS Nano, 2014, 8(8): 8285. doi: 10.1021/nn502715h

[10]

Pak J, Jang J, Cho K. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine[J]. Nanoscale, 2015, 7(44): 18780. doi: 10.1039/C5NR04836B

[11]

Kufer D, Nikitskiy I, Lasanta T. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Adv Mater, 2015, 27(1): 176. doi: 10.1002/adma.v27.1

[12]

Kazim S, Nazeeruddin M K, Gratzel M. Perovskite as light harvester:a game changer in photovoltaics[J]. Angew Chem Int Edit, 2014, 53(11): 2812. doi: 10.1002/anie.v53.11

[13]

Kim H S, Lee C R, Im J H. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 7.

[14]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234. doi: 10.1126/science.aaa9272

[15]

Lee Y, Kwon J, Hwang E. High-performance perovskitegraphene hybrid photodetector[J]. Adv Mater, 2015, 27(1): 41. doi: 10.1002/adma.v27.1

[16]

Kwak D H, Lim D H, Ra H S. High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector[J]. RSC Adv, 2016, 6(69): 65252. doi: 10.1039/C6RA08699C

[17]

Ma C, Shi Y M, Hu W J. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity[J]. Adv Mater, 2016, 28(19): 3683. doi: 10.1002/adma.v28.19

[18]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotech, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[19]

Shkrob I A, Marin T W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds[J]. J Phys Chem Lett, 2014, 5(7): 1066. doi: 10.1021/jz5004022

[20]

Kim J, Lee S H, Lee J H. The role of intrinsic defects in methylammonium lead iodide perovskite[J]. J Phys Chem Lett, 2014, 5(8): 1312. doi: 10.1021/jz500370k

[21]

Dong R, Fang Y, Chae J. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites[J]. Adv Mater, 2015, 27(11): 1912. doi: 10.1002/adma.v27.11

[22]

Zhang H, Cheng J Q, Lin F. Pinhole-free and surfacenanostructured niox film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility[J]. ACS Nano, 2016, 10(1): 1503. doi: 10.1021/acsnano.5b07043

[1]

Sangwan V K, Jariwala D, Kim I S. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2[J]. Nat Nanotech, 2015, 10(5): 403. doi: 10.1038/nnano.2015.56

[2]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotech, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[3]

Gong Y J, Lin J H, Wang X L. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nat Mater, 2014, 13(12): 1135. doi: 10.1038/nmat4091

[4]

Liu Y, Weiss N O, Duan X. Van der Waals heterostructures and devices[J]. Nat Rev Mater, 2016: 16042.

[5]

Li X, Lin M W, Lin J. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy[J]. Sci Adv, 2016, 2(4).

[6]

Kim S, Konar A, Hwang W S. High-mobility and lowpower thin-film transistors based on multilayer MoS2 crystals[J]. Nat Commun, 2012, 3: 1011. doi: 10.1038/ncomms2018

[7]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotech, 2013, 8(7): 497. doi: 10.1038/nnano.2013.100

[8]

Choi W, Cho M Y, Konar A. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J]. Adv Mater, 2012, 24(43): 5832. doi: 10.1002/adma.201201909

[9]

Yu S H, Lee Y, Jang S K. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse[J]. ACS Nano, 2014, 8(8): 8285. doi: 10.1021/nn502715h

[10]

Pak J, Jang J, Cho K. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine[J]. Nanoscale, 2015, 7(44): 18780. doi: 10.1039/C5NR04836B

[11]

Kufer D, Nikitskiy I, Lasanta T. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors[J]. Adv Mater, 2015, 27(1): 176. doi: 10.1002/adma.v27.1

[12]

Kazim S, Nazeeruddin M K, Gratzel M. Perovskite as light harvester:a game changer in photovoltaics[J]. Angew Chem Int Edit, 2014, 53(11): 2812. doi: 10.1002/anie.v53.11

[13]

Kim H S, Lee C R, Im J H. Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 7.

[14]

Yang W S, Noh J H, Jeon N J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234. doi: 10.1126/science.aaa9272

[15]

Lee Y, Kwon J, Hwang E. High-performance perovskitegraphene hybrid photodetector[J]. Adv Mater, 2015, 27(1): 41. doi: 10.1002/adma.v27.1

[16]

Kwak D H, Lim D H, Ra H S. High performance hybrid graphene-CsPbBr3-xIx perovskite nanocrystal photodetector[J]. RSC Adv, 2016, 6(69): 65252. doi: 10.1039/C6RA08699C

[17]

Ma C, Shi Y M, Hu W J. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity[J]. Adv Mater, 2016, 28(19): 3683. doi: 10.1002/adma.v28.19

[18]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotech, 2011, 6(3): 147. doi: 10.1038/nnano.2010.279

[19]

Shkrob I A, Marin T W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds[J]. J Phys Chem Lett, 2014, 5(7): 1066. doi: 10.1021/jz5004022

[20]

Kim J, Lee S H, Lee J H. The role of intrinsic defects in methylammonium lead iodide perovskite[J]. J Phys Chem Lett, 2014, 5(8): 1312. doi: 10.1021/jz500370k

[21]

Dong R, Fang Y, Chae J. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites[J]. Adv Mater, 2015, 27(11): 1912. doi: 10.1002/adma.v27.11

[22]

Zhang H, Cheng J Q, Lin F. Pinhole-free and surfacenanostructured niox film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility[J]. ACS Nano, 2016, 10(1): 1503. doi: 10.1021/acsnano.5b07043

[1]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[2]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[3]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[4]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[5]

Yan Yao, Xiong Liu, Li Yuan, Zhaohua Zhang, Tianling Ren. A novel PIN photodetector with double linear arrays for rainfall prediction. J. Semicond., 2015, 36(9): 094011. doi: 10.1088/1674-4926/36/9/094011

[6]

Zheng Lou, Xiaoli Yang, Haoran Chen, Zhongzhu Liang. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays. J. Semicond., 2018, 39(2): 024002. doi: 10.1088/1674-4926/39/2/024002

[7]

Lü Jihe, Huang Hui, Ren Xiaomin, Miao Ang, Li Yiqun, Wang Rui, Huang Yongqing, Wang Qi. A Monolithic Integrated Long-Wavelength Tunable Photodetector Based on a Low Temperature Buffer Layer. J. Semicond., 2007, 28(11): 1807.

[8]

Huajun Chen, Changzhao Chen, Yang Li, Xianwen Fang. Monolayer-molybdenum-disulfide-based nano-optomechanical transistor andewline tunable nonlinear responses. J. Semicond., 2016, 37(11): 114004. doi: 10.1088/1674-4926/37/11/114004

[9]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[10]

Buwen Cheng, Cheng Li, Zhi Liu, Chunlai Xue. Research progress of Si-based germanium materials and devices. J. Semicond., 2016, 37(8): 081001. doi: 10.1088/1674-4926/37/8/081001

[11]

He Linxiang, Peng Gang, Yang Weiming, Zheng Chaodan, Yu Jun, Wang Yunbo. Preparation and Phase Analysis of PZT Ceramic Targets. J. Semicond., 2007, 28(5): 711.

[12]

Yan Gao, Liyun Zhao, Qiuyu Shang, Chun Li, Zhen Liu, Qi Li, Xina Wang, Qing Zhang. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate. J. Semicond., 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201

[13]

Zhu Haobo, Mao Luhong, , Yang Zhan, , Guo Weilian. Study of Uni-Traveling-Carrier Photodetectors. J. Semicond., 2006, 27(11): 2019.

[14]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[15]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[16]

Yong Zhao, Chao Xu, Xiaoqing Jiang, Huiliang Ge. Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength. J. Semicond., 2013, 34(6): 064009. doi: 10.1088/1674-4926/34/6/064009

[17]

Miao Ang, Huang Yongqing, Li Yiqun, Wu Qiang, Huang Hui, Ren Xiaomin. Application of "Flow-Graph" Technique in Measurement Calibration of High Frequency Characteristics of Photodetectors. J. Semicond., 2007, 28(3): 448.

[18]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[19]

Bin Li, Xiaohong Yang, Weihong Yin, Qianqian Lü, Rong Cui, Qin Han. A high-speed avalanche photodiode. J. Semicond., 2014, 35(7): 074009. doi: 10.1088/1674-4926/35/7/074009

[20]

Chen Liqun, Li Cheng. Design and Simulation of Si-Based Resonant-Cavity-Enhanced Waveguide Photodetectors. J. Semicond., 2006, 27(8): 1476.

Search

Advanced Search >>

GET CITATION

F J Liu, J W Wang, L Wang, X Y Cai, C Jiang, G T Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor[J]. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002.

Export: BibTex EndNote

Article Metrics

Article views: 1385 Times PDF downloads: 19 Times Cited by: 0 Times

History

Manuscript received: 07 November 2016 Manuscript revised: 30 November 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误