J. Semicond. > Volume 38 > Issue 4 > Article Number: 046001

A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer

Yubing Wang , Weihong Yin , Qin Han , , Xiaohong Yang , Han Ye and Dongdong Yin

+ Author Affilications + Find other works by these authors

PDF

Abstract: Graphene field-effect transistors have been intensively studied. However, in order to fabricate devices with more complicated structures, such as the integration with waveguide and other two-dimensional materials, we need to transfer the exfoliated graphene samples to a target position. Due to the small area of exfoliated graphene and its random distribution, the transfer method requires rather high precision. In this paper, we systematically study a method to selectively transfer mechanically exfoliated graphene samples to a target position with a precision of sub-micrometer. To characterize the doping level of this method, we transfer graphene flakes to pre-patterned metal electrodes, forming graphene field-effect transistors. The hole doping of graphene is calculated to be 2.16 × 1012 cm-2. In addition, we fabricate a waveguide-integrated multilayer graphene photodetector to demonstrate the viability and accuracy of this method. A photocurrent as high as 0.4 μA is obtained, corresponding to a photoresponsivity of 0.48 mA/W. The device performs uniformly in nine illumination cycles.

Key words: graphenefield-effect transistorflake

Abstract: Graphene field-effect transistors have been intensively studied. However, in order to fabricate devices with more complicated structures, such as the integration with waveguide and other two-dimensional materials, we need to transfer the exfoliated graphene samples to a target position. Due to the small area of exfoliated graphene and its random distribution, the transfer method requires rather high precision. In this paper, we systematically study a method to selectively transfer mechanically exfoliated graphene samples to a target position with a precision of sub-micrometer. To characterize the doping level of this method, we transfer graphene flakes to pre-patterned metal electrodes, forming graphene field-effect transistors. The hole doping of graphene is calculated to be 2.16 × 1012 cm-2. In addition, we fabricate a waveguide-integrated multilayer graphene photodetector to demonstrate the viability and accuracy of this method. A photocurrent as high as 0.4 μA is obtained, corresponding to a photoresponsivity of 0.48 mA/W. The device performs uniformly in nine illumination cycles.

Key words: graphenefield-effect transistorflake



References:

[1]

Bolotin K I, Sikes K J, Jiang Z. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146(9): 351.

[2]

Morozov S V, Novoselov K S, Katsnelson M I. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett, 2008, 100(1): 016602. doi: 10.1103/PhysRevLett.100.016602

[3]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965

[4]

Mak K F, Sfeir M Y, Wu Y. Measurement of the optical conductivity of graphene[J]. Phys Rev Lett, 2008, 101(19): 196405. doi: 10.1103/PhysRevLett.101.196405

[5]

Lee E J H, Balasubramanian K, Weitz R T. Contact and edge effects in graphene devices[J]. Nat Nanotechnol, 2008, 3(8): 486. doi: 10.1038/nnano.2008.172

[6]

Xia F, Mueller T, Lin Y. Ultrafast graphene photodetector[J]. Nat Nanotechnol, 2009, 4(12): 839. doi: 10.1038/nnano.2009.292

[7]

Freitag M, Low T, Xia F. Photoconductivity of biased graphene[J]. Nat Photonics, 2013, 7(1): 53.

[8]

Schall D, Neumaier D, Mohsin M. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems[J]. ACS Photonics, 2014, 1(9): 781. doi: 10.1021/ph5001605

[9]

Youngblood N, Anugrah Y, Ma R. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides[J]. Nano Lett, 2014, 14(5): 2741. doi: 10.1021/nl500712u

[10]

Liu M, Yin X, Ulin-Avila E. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64. doi: 10.1038/nature10067

[11]

Liu M, Yin X, Zhang X. Double-layer graphene optical modulator[J]. Nano Lett, 2012, 12(3): 1482. doi: 10.1021/nl204202k

[12]

Gan S, Cheng C, Zhan Y. A highly efficient thermo-optic microring modulator assisted by graphene[J]. Nanoscale, 2015, 7(47): 20249. doi: 10.1039/C5NR05084G

[13]

Phare C T, Lee Y H D, Cardenas J, et al. 30 GHz Zeno-based graphene electro-optic modulator. arXiv preprint arXiv: 1411. 2053, 2014

[14]

Liu C H, Chang Y C, Norris T B. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nat Nanotechnol, 2014, 9(4): 273. doi: 10.1038/nnano.2014.31

[15]

Zhang W, Chuu C P, Huang J K. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures[J]. Sci Rep, 2014, 4: 32826.

[16]

Xu H, Wu J, Feng Q. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor[J]. Small, 2014, 10(11): 2300. doi: 10.1002/smll.201303670

[17]

Gao L, Ni G X, Liu Y. Face-to-face transfer of wafer-scale graphene films[J]. Nature, 2014, 505(7482): 190.

[18]

Bae S, Kim H, Lee Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol, 2010, 5(8): 574. doi: 10.1038/nnano.2010.132

[19]

Liang X, Sperling B A, Calizo I. Toward clean and crackless transfer of graphene[J]. ACS Nano, 2011, 5(11): 9144. doi: 10.1021/nn203377t

[20]

Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene[J]. Appl Phys Lett, 2007, 91(16): 163513. doi: 10.1063/1.2789673

[21]

Lin Y C, Lu C C, Yeh C H. Graphene annealing: how clean can it be[J]. Nano Lett, 2011, 12(1): 414.

[22]

Casiraghi C, Pisana S, Novoselov K S. Raman fingerprint of charged impurities in graphene[J]. Appl Phys Lett, 2007, 91(23): 233108. doi: 10.1063/1.2818692

[1]

Bolotin K I, Sikes K J, Jiang Z. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146(9): 351.

[2]

Morozov S V, Novoselov K S, Katsnelson M I. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett, 2008, 100(1): 016602. doi: 10.1103/PhysRevLett.100.016602

[3]

Nair R R, Blake P, Grigorenko A N. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308. doi: 10.1126/science.1156965

[4]

Mak K F, Sfeir M Y, Wu Y. Measurement of the optical conductivity of graphene[J]. Phys Rev Lett, 2008, 101(19): 196405. doi: 10.1103/PhysRevLett.101.196405

[5]

Lee E J H, Balasubramanian K, Weitz R T. Contact and edge effects in graphene devices[J]. Nat Nanotechnol, 2008, 3(8): 486. doi: 10.1038/nnano.2008.172

[6]

Xia F, Mueller T, Lin Y. Ultrafast graphene photodetector[J]. Nat Nanotechnol, 2009, 4(12): 839. doi: 10.1038/nnano.2009.292

[7]

Freitag M, Low T, Xia F. Photoconductivity of biased graphene[J]. Nat Photonics, 2013, 7(1): 53.

[8]

Schall D, Neumaier D, Mohsin M. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems[J]. ACS Photonics, 2014, 1(9): 781. doi: 10.1021/ph5001605

[9]

Youngblood N, Anugrah Y, Ma R. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides[J]. Nano Lett, 2014, 14(5): 2741. doi: 10.1021/nl500712u

[10]

Liu M, Yin X, Ulin-Avila E. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64. doi: 10.1038/nature10067

[11]

Liu M, Yin X, Zhang X. Double-layer graphene optical modulator[J]. Nano Lett, 2012, 12(3): 1482. doi: 10.1021/nl204202k

[12]

Gan S, Cheng C, Zhan Y. A highly efficient thermo-optic microring modulator assisted by graphene[J]. Nanoscale, 2015, 7(47): 20249. doi: 10.1039/C5NR05084G

[13]

Phare C T, Lee Y H D, Cardenas J, et al. 30 GHz Zeno-based graphene electro-optic modulator. arXiv preprint arXiv: 1411. 2053, 2014

[14]

Liu C H, Chang Y C, Norris T B. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nat Nanotechnol, 2014, 9(4): 273. doi: 10.1038/nnano.2014.31

[15]

Zhang W, Chuu C P, Huang J K. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures[J]. Sci Rep, 2014, 4: 32826.

[16]

Xu H, Wu J, Feng Q. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor[J]. Small, 2014, 10(11): 2300. doi: 10.1002/smll.201303670

[17]

Gao L, Ni G X, Liu Y. Face-to-face transfer of wafer-scale graphene films[J]. Nature, 2014, 505(7482): 190.

[18]

Bae S, Kim H, Lee Y. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol, 2010, 5(8): 574. doi: 10.1038/nnano.2010.132

[19]

Liang X, Sperling B A, Calizo I. Toward clean and crackless transfer of graphene[J]. ACS Nano, 2011, 5(11): 9144. doi: 10.1021/nn203377t

[20]

Moser J, Barreiro A, Bachtold A. Current-induced cleaning of graphene[J]. Appl Phys Lett, 2007, 91(16): 163513. doi: 10.1063/1.2789673

[21]

Lin Y C, Lu C C, Yeh C H. Graphene annealing: how clean can it be[J]. Nano Lett, 2011, 12(1): 414.

[22]

Casiraghi C, Pisana S, Novoselov K S. Raman fingerprint of charged impurities in graphene[J]. Appl Phys Lett, 2007, 91(23): 233108. doi: 10.1063/1.2818692

[1]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[2]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[3]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[4]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[5]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[6]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[7]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[8]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[9]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[10]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[11]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[12]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[13]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[14]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

[15]

Jiang Ran, Meng Lingguo, Zhang Xijian, Hyung-Suk Jung, Cheol Seong Hwang. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. J. Semicond., 2012, 33(9): 093004. doi: 10.1088/1674-4926/33/9/093004

[16]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[17]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[18]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[19]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[20]

Jia Li, Cui Yu, Li Wang, Qingbin Liu, Zezhao He, Shujun Cai, Zhihong Feng. Self-aligned graphene field-effect transistors on SiC (0001) substrates with self-oxidized gate dielectric. J. Semicond., 2014, 35(7): 074006. doi: 10.1088/1674-4926/35/7/074006

Search

Advanced Search >>

GET CITATION

Y B Wang, W H Yin, Q Han, X H Yang, H Ye, D D Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer[J]. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001.

Export: BibTex EndNote

Article Metrics

Article views: 871 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 16 June 2016 Manuscript revised: 17 November 2016 Online: Published: 01 April 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误