J. Semicond. > Volume 38 > Issue 6 > Article Number: 062002

The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals

Pengfei Wang , , Ruihua Nan and Zengyun Jian

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The deep-level defects of CdZnTe (CZT) crystals grown by the modified vertical Bridgman (MVB) method act as trapping centers or recombination centers in the band gap, which have significant effects on its electrical properties. The resistivity and electron mobility-lifetime product of high resistivity Cd0.9Zn0.1Te wafer marked CZT1 and low resistivity Cd0.9Zn0.1Te wafer marked CZT2 were tested respectively. Their deep-level defects were identified by thermally stimulated current (TSC) spectroscopy and thermoelectric effect spectroscopy (TEES) respectively. Then the trap-related parameters were characterized by the simultaneous multiple peak analysis (SIMPA) method. The deep donor level (EDD)dominating dark current was calculated by the relationship between dark current and temperature. The Fermi-level was characterized by current-voltage measurements of temperature dependence. The width of the band gap was characterized by ultraviolet-visible-infrared transmittance spectroscopy. The results show the traps concentration and capture cross section of CZT1 are lower than CZT2, so its electron mobility-lifetime product is greater than CZT2. The Fermi-level of CZT1 is closer to the middle gap than CZT2. The degree of Fermi-level pinned by EDD of CZT1 is larger than CZT2. It can be concluded that the resistivity of CZT crystals increases as the degree of Fermi-level pinned near the middle gap by the deep donor level enlarges.

Key words: Cd0.9Zn0.1Tedeep-level defectsthermally stimulated current spectroscopyFermi-levelelectrical properties

Abstract: The deep-level defects of CdZnTe (CZT) crystals grown by the modified vertical Bridgman (MVB) method act as trapping centers or recombination centers in the band gap, which have significant effects on its electrical properties. The resistivity and electron mobility-lifetime product of high resistivity Cd0.9Zn0.1Te wafer marked CZT1 and low resistivity Cd0.9Zn0.1Te wafer marked CZT2 were tested respectively. Their deep-level defects were identified by thermally stimulated current (TSC) spectroscopy and thermoelectric effect spectroscopy (TEES) respectively. Then the trap-related parameters were characterized by the simultaneous multiple peak analysis (SIMPA) method. The deep donor level (EDD)dominating dark current was calculated by the relationship between dark current and temperature. The Fermi-level was characterized by current-voltage measurements of temperature dependence. The width of the band gap was characterized by ultraviolet-visible-infrared transmittance spectroscopy. The results show the traps concentration and capture cross section of CZT1 are lower than CZT2, so its electron mobility-lifetime product is greater than CZT2. The Fermi-level of CZT1 is closer to the middle gap than CZT2. The degree of Fermi-level pinned by EDD of CZT1 is larger than CZT2. It can be concluded that the resistivity of CZT crystals increases as the degree of Fermi-level pinned near the middle gap by the deep donor level enlarges.

Key words: Cd0.9Zn0.1Tedeep-level defectsthermally stimulated current spectroscopyFermi-levelelectrical properties



References:

[1]

Xu L Y, Jie W Q, Zha G Q. Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In[J]. Appl Phys Lett, 2014, 104: 232109. doi: 10.1063/1.4883403

[2]

Gul R, Keeter K, Rodriguez R. Point defects in Pb-, Bi-, and In-doped CdZnTe detectors:deep-level transient spectroscopy (DLTS) measurements[J]. J Electron Mater, 2012, 41(3): 488. doi: 10.1007/s11664-011-1802-y

[3]

Cola A, Farclla I. Electric field and current transport mechanisms in Schottky CdTe X-ray detectors under perturbing optical radiation[J]. Sensors, 2013, 13: 9414. doi: 10.3390/s130709414

[4]

Bolotnikov A, Camarda G C, Wright G W. Factors limiting the performance of CdZnTe detectors[J]. IEEE Trans Nucl Sci, 2005, 52: 589. doi: 10.1109/TNS.2005.851419

[5]

Cavallini A, Fraboni B, Dusi W. Behavior of CdTe and CdZnTe detectors following electron irradiation[J]. IEEE Trans Nucl Sci, 2002, 49: 1598. doi: 10.1109/TNS.2002.801683

[6]

Bolotnikov A E, Camarda G S, Cui Y. Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors[J]. J Cryst Growth, 2013, 379: 46. doi: 10.1016/j.jcrysgro.2013.01.048

[7]

Zha G Q, Yang J, Xu L Y. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe[J]. J Appl Phys, 2014, 115: 043715. doi: 10.1063/1.4863465

[8]

Bolotnikov A E, Boggs S E, Hubertchen C M. Properties of Pt Schottky type contacts on high-resistivity CdZnTe detectors[J]. Nucl Instrum Meth A, 2002, 482(1): 395.

[9]

Carvalho A, Tagantsev A K, Oberg S. Cation-site intrinsic defects in Zn-doped CdTe[J]. Phys Rev B, 2010, 81(7): 075215. doi: 10.1103/PhysRevB.81.075215

[10]

Nan R H, Jie W Q, Zha G Q. Relationship between high resistivity and the deep level defects in CZT:In[J]. Nucl Instrum Meth A, 2013, 705: 32. doi: 10.1016/j.nima.2012.12.081

[11]

Pavlovic M, Desnica U V. Precise determination of deep trap signatures and their relative and absolute concentrations in semiinsulating GaAs[J]. J Appl Phys, 1998, 84(4): 2018. doi: 10.1063/1.368258

[12]

Nan R H, Jie W Q, Zha G Q. Investigation on defect levels in CdZnTe:Al using thermally stimulated current spectroscopy[J]. J Phys D:Appl Phys, 2010, 43: 345104. doi: 10.1088/0022-3727/43/34/345104

[13]

Schlesinger T E, Toney J E, Yoon H. Cadmium zinc telluride and its use as a nuclear radiation detector material[J]. Mater Sci Eng, 2001, 32: 103. doi: 10.1016/S0927-796X(01)00027-4

[14]

Nan R H, Jie W Q, Zha G Q. Determination of trap levels in CZT:In by thermally stimulated current spectroscopy[J]. Trans Nonferrous Met Soc China, 2012, 22: s148. doi: 10.1016/S1003-6326(12)61700-2

[15]

Nan R H, Jie W Q, Zha G Q. Thermally stimulated current spectroscopy applied on defect characterization in semiinsulating Cd0.9Zn0.1Te[J]. J Cryst Growth, 2012, 361: 25. doi: 10.1016/j.jcrysgro.2012.09.001

[16]

Xu L Y, Jie W Q, Fu X. Axial distribution of deep-level defects in as-grown CdZnTe:In ingots and their effects on the material's electrical properties[J]. J Cryst Growth, 2015, 409: 71. doi: 10.1016/j.jcrysgro.2014.09.039

[17]

Xu L Y, Jie W Q, Zhou B R. Effects of crystal growth methods on deep-level defects and electrical properties of CdZnTe:In crystals[J]. J Electron Mater, 2015, 44: 518. doi: 10.1007/s11664-014-3452-3

[1]

Xu L Y, Jie W Q, Zha G Q. Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In[J]. Appl Phys Lett, 2014, 104: 232109. doi: 10.1063/1.4883403

[2]

Gul R, Keeter K, Rodriguez R. Point defects in Pb-, Bi-, and In-doped CdZnTe detectors:deep-level transient spectroscopy (DLTS) measurements[J]. J Electron Mater, 2012, 41(3): 488. doi: 10.1007/s11664-011-1802-y

[3]

Cola A, Farclla I. Electric field and current transport mechanisms in Schottky CdTe X-ray detectors under perturbing optical radiation[J]. Sensors, 2013, 13: 9414. doi: 10.3390/s130709414

[4]

Bolotnikov A, Camarda G C, Wright G W. Factors limiting the performance of CdZnTe detectors[J]. IEEE Trans Nucl Sci, 2005, 52: 589. doi: 10.1109/TNS.2005.851419

[5]

Cavallini A, Fraboni B, Dusi W. Behavior of CdTe and CdZnTe detectors following electron irradiation[J]. IEEE Trans Nucl Sci, 2002, 49: 1598. doi: 10.1109/TNS.2002.801683

[6]

Bolotnikov A E, Camarda G S, Cui Y. Characterization and evaluation of extended defects in CZT crystals for gamma-ray detectors[J]. J Cryst Growth, 2013, 379: 46. doi: 10.1016/j.jcrysgro.2013.01.048

[7]

Zha G Q, Yang J, Xu L Y. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe[J]. J Appl Phys, 2014, 115: 043715. doi: 10.1063/1.4863465

[8]

Bolotnikov A E, Boggs S E, Hubertchen C M. Properties of Pt Schottky type contacts on high-resistivity CdZnTe detectors[J]. Nucl Instrum Meth A, 2002, 482(1): 395.

[9]

Carvalho A, Tagantsev A K, Oberg S. Cation-site intrinsic defects in Zn-doped CdTe[J]. Phys Rev B, 2010, 81(7): 075215. doi: 10.1103/PhysRevB.81.075215

[10]

Nan R H, Jie W Q, Zha G Q. Relationship between high resistivity and the deep level defects in CZT:In[J]. Nucl Instrum Meth A, 2013, 705: 32. doi: 10.1016/j.nima.2012.12.081

[11]

Pavlovic M, Desnica U V. Precise determination of deep trap signatures and their relative and absolute concentrations in semiinsulating GaAs[J]. J Appl Phys, 1998, 84(4): 2018. doi: 10.1063/1.368258

[12]

Nan R H, Jie W Q, Zha G Q. Investigation on defect levels in CdZnTe:Al using thermally stimulated current spectroscopy[J]. J Phys D:Appl Phys, 2010, 43: 345104. doi: 10.1088/0022-3727/43/34/345104

[13]

Schlesinger T E, Toney J E, Yoon H. Cadmium zinc telluride and its use as a nuclear radiation detector material[J]. Mater Sci Eng, 2001, 32: 103. doi: 10.1016/S0927-796X(01)00027-4

[14]

Nan R H, Jie W Q, Zha G Q. Determination of trap levels in CZT:In by thermally stimulated current spectroscopy[J]. Trans Nonferrous Met Soc China, 2012, 22: s148. doi: 10.1016/S1003-6326(12)61700-2

[15]

Nan R H, Jie W Q, Zha G Q. Thermally stimulated current spectroscopy applied on defect characterization in semiinsulating Cd0.9Zn0.1Te[J]. J Cryst Growth, 2012, 361: 25. doi: 10.1016/j.jcrysgro.2012.09.001

[16]

Xu L Y, Jie W Q, Fu X. Axial distribution of deep-level defects in as-grown CdZnTe:In ingots and their effects on the material's electrical properties[J]. J Cryst Growth, 2015, 409: 71. doi: 10.1016/j.jcrysgro.2014.09.039

[17]

Xu L Y, Jie W Q, Zhou B R. Effects of crystal growth methods on deep-level defects and electrical properties of CdZnTe:In crystals[J]. J Electron Mater, 2015, 44: 518. doi: 10.1007/s11664-014-3452-3

[1]

G. Nagaraju, K. Ravindranatha Reddy, V. Rajagopal Reddy. Electrical transport and current properties of rare-earth dysprosium Schottky electrode on p-type GaN at various annealing temperatures. J. Semicond., 2017, 38(11): 114001. doi: 10.1088/1674-4926/38/11/114001

[2]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[3]

Shuxin Tan, Takashi Egawa. Influence of growth conditions of oxide on electrical properties of AlGaN/GaN metal–insulator–semiconductor transistors. J. Semicond., 2019, 40(4): 042801. doi: 10.1088/1674-4926/40/4/042801

[4]

Jiaming Luo, Min Guan, Yang Zhang, Liqiang Chen, Yiping Zeng. The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors. J. Semicond., 2018, 39(12): 124007. doi: 10.1088/1674-4926/39/12/124007

[5]

Yongye Liang, Kyungsoo Jang, S. Velumani, Cam Phu Thi Nguyen, Junsin Yi. Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor. J. Semicond., 2015, 36(2): 024007. doi: 10.1088/1674-4926/36/2/024007

[6]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[7]

Rahul Kumar, Parag Bhargava, Ritu Srivastava, Priyanka Tyagi. Synthesis and electroluminescence properties of tris-[5-choloro-8-hydroxyquinoline] aluminum Al(5-Clq)3. J. Semicond., 2015, 36(6): 064001. doi: 10.1088/1674-4926/36/6/064001

[8]

Mihir M. Vora, Aditya M. Vora. Effect of rhenium doping on various physical properties of single crystals of MoSe2. J. Semicond., 2012, 33(1): 012001. doi: 10.1088/1674-4926/33/1/012001

[9]

Xia Jilin, Liu Bo, Song Zhitang, Feng Songlin. Influence of Deposition Parameters on Electrical Propertiesof Ge2Sb2Te5 Thin Films. J. Semicond., 2006, 27(S1): 155.

[10]

Zhao Youwen, Dong Zhiyuan, Li Chengji, Duan Manlong, Sun Wenrong. Influence of Deep Level Defects on Electrical Properties and Defect Control in Semi-Insulating InP. J. Semicond., 2006, 27(3): 524.

[11]

Ken K. Chin, Zimeng Cheng. Semiconductor steady state defect effective Fermi level and deep level transient spectroscopy depth profiling. J. Semicond., 2016, 37(9): 092003. doi: 10.1088/1674-4926/37/9/092003

[12]

Rahul Kumar, Ritu Srivastava, Punita Singh. Synthesis and electroluminescence characterization of a new aluminum complex,[8-hydroxyquinoline] bis[2, 2'bipyridine] aluminum Al(Bpy)2q. J. Semicond., 2016, 37(1): 013001. doi: 10.1088/1674-4926/37/1/013001

[13]

Shengnan Zhang, Xiaozheng Lian, Yanchao Ma, Weidan Liu, Yingwu Zhang, Yongkuan Xu, Hongjuan Cheng. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003

[14]

Chao Xiong, Jin Xiao, Lei Chen, Wenhan Du, Weilong Xu, Dongdong Hou. Interfacial passivation of n-ZnO/p-Si heterojunction by CuI thin layer. J. Semicond., 2018, 39(12): 124013. doi: 10.1088/1674-4926/39/12/124013

[15]

Paragjyoti Gogoi, Rajib Saikia, Sanjib Changmai. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique. J. Semicond., 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002

[16]

Tingting Chen, Bing Liu, Xiujian Chou, Jun Liu, Chenyang Xue, Wendong Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics. J. Semicond., 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002

[17]

Dong Maojin, Chen Zhaoyang, Fan Yanwei, Wang Junhua, Tao Mingde, Cong Xiuyun. NTC and electrical properties of nickel and gold doped n-type silicon material. J. Semicond., 2009, 30(8): 083007. doi: 10.1088/1674-4926/30/8/083007

[18]

Wang Chao, Zhang Yimen, Zhang Yuming, Wang Yuehu, Xu Daqing. Deep Level Transient Fourier Spectroscopy and Photoluminescence of Vanadium Acceptor Level in n-Type 4H-SiC. J. Semicond., 2008, 29(2): 240.

[19]

Ken K. Chin. Local charge neutrality condition, Fermi level and majority carrier density of a semiconductor with multiple localized multi-level intrinsic/impurity defects. J. Semicond., 2011, 32(11): 112001. doi: 10.1088/1674-4926/32/11/112001

[20]

A. R. Babar, S. S. Shinde, A.V. Moholkar, C. H. Bhosale, J. H. Kim, K. Y. Rajpure. Physical properties of sprayed antimony doped tin oxide thin films: Role of thickness. J. Semicond., 2011, 32(5): 053001. doi: 10.1088/1674-4926/32/5/053001

Search

Advanced Search >>

GET CITATION

P F Wang, R H Nan, Z Y Jian. The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals[J]. J. Semicond., 2017, 38(6): 062002. doi: 10.1088/1674-4926/38/6/062002.

Export: BibTex EndNote

Article Metrics

Article views: 1267 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 11 November 2016 Manuscript revised: 15 December 2016 Online: Published: 01 June 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误