J. Semicond. > Volume 38 > Issue 8 > Article Number: 084006

Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer

Kang Luo 1, , Yulin Sun 1, , Liyu Zhou 1, , Fang Wang 1, , and Fang Wu 1, 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Copper indium gallium selenium (CIGS) thin film solar cells have become one of the hottest topics in solar energy due to their high photoelectric transformation efficiency. To real applications, CIGS thin film is covered by the buffer layer and absorption layer. Traditionally, cadmium sulfide (CdS) is inserted into the middle of the window layer (ZnO) and absorption layer (CIGS) as a buffer layer. However, the application of the GIGS/CdS thin film solar cells has been limited because of the environmental pollution resulting from the toxic cadmium atom. Although zinc sulfide (ZnS) has been proposed to be one of the candidates, the performance of such battery cells has not been investigated. Here, in this paper, we systematically study the possibility of using zinc sulfide (ZnS) as a buffer layer. By including the effects of thickness, concentration of a buffer layer, intrinsic layer and the absorbing layer, we find that photoelectric transformation efficiency of ZnO/ZnS(n)/CIGS(i)/CIGS(p) solar cell is about 17.22%, which is qualified as a commercial solar cell. Moreover, we also find that the open-circuit voltage is~0.60 V, the short-circuit current is~36.99 mA/cm2 and the filled factor is~77.44%. Therefore, our results suggest that zinc sulfide may be the potential candidate of CdS as a buffer layer.

Key words: solar cellshetero junction structurecadmium-free buffer layer

Abstract: Copper indium gallium selenium (CIGS) thin film solar cells have become one of the hottest topics in solar energy due to their high photoelectric transformation efficiency. To real applications, CIGS thin film is covered by the buffer layer and absorption layer. Traditionally, cadmium sulfide (CdS) is inserted into the middle of the window layer (ZnO) and absorption layer (CIGS) as a buffer layer. However, the application of the GIGS/CdS thin film solar cells has been limited because of the environmental pollution resulting from the toxic cadmium atom. Although zinc sulfide (ZnS) has been proposed to be one of the candidates, the performance of such battery cells has not been investigated. Here, in this paper, we systematically study the possibility of using zinc sulfide (ZnS) as a buffer layer. By including the effects of thickness, concentration of a buffer layer, intrinsic layer and the absorbing layer, we find that photoelectric transformation efficiency of ZnO/ZnS(n)/CIGS(i)/CIGS(p) solar cell is about 17.22%, which is qualified as a commercial solar cell. Moreover, we also find that the open-circuit voltage is~0.60 V, the short-circuit current is~36.99 mA/cm2 and the filled factor is~77.44%. Therefore, our results suggest that zinc sulfide may be the potential candidate of CdS as a buffer layer.

Key words: solar cellshetero junction structurecadmium-free buffer layer



References:

[1]

Wolden C A, Kurtin J, Baxter J B. Photovoltaic manufacturing:present status, future prospects, and research needs[J]. J Vac Sci Technol, 2011, 29: 030801. doi: 10.1116/1.3569757

[2]

Parisi A, Curcio L, Rocca V. Thin film CIGS solar cells, photovoltaic modules, and the problems of modeling[J]. J Photoenergy, 2013, 2013: 1.

[3]

Peng L, Yang P, Zi X. Progress of the Cd-free buffer layers used in Cu-based film solar cells[J]. Mater Rev, 2014, 7: 131.

[4]

Ramanathan K, Contreras M A, Perkins C L. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells[J]. Prog Photovolt:Res Appl, 2003, 11: 225. doi: 10.1002/(ISSN)1099-159X

[5]

Göde F, Gümüs C, Zor M. Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method[J]. J Cryst Growth, 2007, 299: 136. doi: 10.1016/j.jcrysgro.2006.10.266

[6]

Oliva A I, Castro-Rodríguez R, Solís-Canto O. Comparison of properties of CdS thin films grown by two techniques[J]. Appl Surf Sci, 2003, 205: 56. doi: 10.1016/S0169-4332(02)01081-4

[7]

Berger L I, Pamplin B P. Properties of semiconductors[J]. CRC Handbook of Chemistry & Physics, 1993: 1278.

[8]

Nadeem M Y, Ahmed W. Optical properties of ZnS thin films[J]. Turk J Phys, 2000, 24: 651.

[9]

Huo X X, Mo X L, Chen G R. Deposition technologies of Cd-free buffer layers in solar cells made of copper indium gallium diselenide films[J]. Chin J Vac Sin Tech, 2012, 9: 834.

[10]

Naghavi N, Abour D R, Allsop N. Buffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics:present status and current developments[J]. Prog Photovolt Res Appl, 2010, 18: 411. doi: 10.1002/pip.955

[11]

Peng L J, Yang P Z, Zi X F. Progress of the Cd-free buffer used in Cu-based film solar cells[J]. Mat Rev A, 2014, 7: 131.

[12]

Hariskos D, Spiering S, Powalla M. Buffer layers in Cu(In, Ga)Se2 solar cells and modules[J]. Thin Solid Films, 2005, 480: 99.

[13]

Platzer-Bjorkman C, Torndahl T. Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se2 based thin film solar cells:band alignment and sulfur gradient[J]. J Appl Phys, 2006, 8: 100.

[14]

Luo P F, Jiang G S, Zhu C F. Pulsed laser deposition ZnS buffer layers for CIGS solar cells chin[J]. J Chem Phys, 2009, 22: 97.

[15]

Barrera M, Rubinelli F, Rey-Stolle I. Numerical simulation of Ge solar cells using D-AMPS-1D code[J]. Physica B, 2012, 407: 3282. doi: 10.1016/j.physb.2011.12.087

[16]

Liu Y M, Heinzel D, Rockett A. A new solar cell simulator:wxAMPS[J]. The 37th Photovoltmc Specialists Conference (PVSC), Seattle, 2011: 2753.

[17]

Liu Y M, Heinzel D, Rockett A. A revised version of the amps simulation code[J]. The 35th Photovoltmc Specialists Conference (PVSC), Hawaii, 2010: 1943.

[18]

Liu Y M, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS[J]. Sol Energy Mater Sol Cells, 2012, 98: 124. doi: 10.1016/j.solmat.2011.10.010

[19]

Bouloufa A, Djessas K, Zegadi A. Numerical simulation of CuInxGa(1-x)Se2 solar cells by AMPS-1D[J]. Thin Solid Films, 2007, 515: 6285. doi: 10.1016/j.tsf.2006.12.110

[20]

Basore P A. Numerical modeling of textured silicon solar cells using PC-1D[J]. IEEE Trans Electron Device, 1990, 37: 337. doi: 10.1109/16.46362

[21]

Liu J, Huang S H, He L. Simulation of a high-efficiency silicon-based heterojunction solar cell[J]. J Semicond, 2015, 36: 044010. doi: 10.1088/1674-4926/36/4/044010

[22]

Li Z Q, Xiao Y G, Li Z M S. Modeling of multi-junction solar cells by Crosslight APSYS[J]. Proc SPIE, 2006, 6339: 633909. doi: 10.1117/12.681258

[23]

Rode D L. Electron mobility in Ⅱ-Ⅵ semiconductors[J]. Phys Rev B, 1970: 24036.

[24]

Ramanathan K, Contreras M A, Perkins C L. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells[J]. Prog Photovolt Res Appl, 2003, 11: 225. doi: 10.1002/(ISSN)1099-159X

[25]

Ghosh P K, Jana S, Nandy S. Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique[J]. Mater Res Bull, 2007, 42: 505. doi: 10.1016/j.materresbull.2006.06.019

[26]

Tetsuya T, Masayuki C, Yuji Y. Insertion of thin interlayers under the negative electrode of C60 Schottky-type photovoltaic cells[J]. Appl Phys Lett, 2004, 85: 6412. doi: 10.1063/1.1841479

[27]

Bosio A, Romeo N, Podestá A. Why CuInGaSe2 and CdTe polycrystalline thin film solar cells are more efficient than the corresponding single crystal[J]. Cryst Res Technol, 2005, 40: 1048. doi: 10.1002/(ISSN)1521-4079

[1]

Wolden C A, Kurtin J, Baxter J B. Photovoltaic manufacturing:present status, future prospects, and research needs[J]. J Vac Sci Technol, 2011, 29: 030801. doi: 10.1116/1.3569757

[2]

Parisi A, Curcio L, Rocca V. Thin film CIGS solar cells, photovoltaic modules, and the problems of modeling[J]. J Photoenergy, 2013, 2013: 1.

[3]

Peng L, Yang P, Zi X. Progress of the Cd-free buffer layers used in Cu-based film solar cells[J]. Mater Rev, 2014, 7: 131.

[4]

Ramanathan K, Contreras M A, Perkins C L. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells[J]. Prog Photovolt:Res Appl, 2003, 11: 225. doi: 10.1002/(ISSN)1099-159X

[5]

Göde F, Gümüs C, Zor M. Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method[J]. J Cryst Growth, 2007, 299: 136. doi: 10.1016/j.jcrysgro.2006.10.266

[6]

Oliva A I, Castro-Rodríguez R, Solís-Canto O. Comparison of properties of CdS thin films grown by two techniques[J]. Appl Surf Sci, 2003, 205: 56. doi: 10.1016/S0169-4332(02)01081-4

[7]

Berger L I, Pamplin B P. Properties of semiconductors[J]. CRC Handbook of Chemistry & Physics, 1993: 1278.

[8]

Nadeem M Y, Ahmed W. Optical properties of ZnS thin films[J]. Turk J Phys, 2000, 24: 651.

[9]

Huo X X, Mo X L, Chen G R. Deposition technologies of Cd-free buffer layers in solar cells made of copper indium gallium diselenide films[J]. Chin J Vac Sin Tech, 2012, 9: 834.

[10]

Naghavi N, Abour D R, Allsop N. Buffer layers and transparent conducting oxides for chalcopyrite Cu(In, Ga)(S, Se)2 based thin film photovoltaics:present status and current developments[J]. Prog Photovolt Res Appl, 2010, 18: 411. doi: 10.1002/pip.955

[11]

Peng L J, Yang P Z, Zi X F. Progress of the Cd-free buffer used in Cu-based film solar cells[J]. Mat Rev A, 2014, 7: 131.

[12]

Hariskos D, Spiering S, Powalla M. Buffer layers in Cu(In, Ga)Se2 solar cells and modules[J]. Thin Solid Films, 2005, 480: 99.

[13]

Platzer-Bjorkman C, Torndahl T. Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se2 based thin film solar cells:band alignment and sulfur gradient[J]. J Appl Phys, 2006, 8: 100.

[14]

Luo P F, Jiang G S, Zhu C F. Pulsed laser deposition ZnS buffer layers for CIGS solar cells chin[J]. J Chem Phys, 2009, 22: 97.

[15]

Barrera M, Rubinelli F, Rey-Stolle I. Numerical simulation of Ge solar cells using D-AMPS-1D code[J]. Physica B, 2012, 407: 3282. doi: 10.1016/j.physb.2011.12.087

[16]

Liu Y M, Heinzel D, Rockett A. A new solar cell simulator:wxAMPS[J]. The 37th Photovoltmc Specialists Conference (PVSC), Seattle, 2011: 2753.

[17]

Liu Y M, Heinzel D, Rockett A. A revised version of the amps simulation code[J]. The 35th Photovoltmc Specialists Conference (PVSC), Hawaii, 2010: 1943.

[18]

Liu Y M, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS[J]. Sol Energy Mater Sol Cells, 2012, 98: 124. doi: 10.1016/j.solmat.2011.10.010

[19]

Bouloufa A, Djessas K, Zegadi A. Numerical simulation of CuInxGa(1-x)Se2 solar cells by AMPS-1D[J]. Thin Solid Films, 2007, 515: 6285. doi: 10.1016/j.tsf.2006.12.110

[20]

Basore P A. Numerical modeling of textured silicon solar cells using PC-1D[J]. IEEE Trans Electron Device, 1990, 37: 337. doi: 10.1109/16.46362

[21]

Liu J, Huang S H, He L. Simulation of a high-efficiency silicon-based heterojunction solar cell[J]. J Semicond, 2015, 36: 044010. doi: 10.1088/1674-4926/36/4/044010

[22]

Li Z Q, Xiao Y G, Li Z M S. Modeling of multi-junction solar cells by Crosslight APSYS[J]. Proc SPIE, 2006, 6339: 633909. doi: 10.1117/12.681258

[23]

Rode D L. Electron mobility in Ⅱ-Ⅵ semiconductors[J]. Phys Rev B, 1970: 24036.

[24]

Ramanathan K, Contreras M A, Perkins C L. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells[J]. Prog Photovolt Res Appl, 2003, 11: 225. doi: 10.1002/(ISSN)1099-159X

[25]

Ghosh P K, Jana S, Nandy S. Size-dependent optical and dielectric properties of nanocrystalline ZnS thin films synthesized via rf-magnetron sputtering technique[J]. Mater Res Bull, 2007, 42: 505. doi: 10.1016/j.materresbull.2006.06.019

[26]

Tetsuya T, Masayuki C, Yuji Y. Insertion of thin interlayers under the negative electrode of C60 Schottky-type photovoltaic cells[J]. Appl Phys Lett, 2004, 85: 6412. doi: 10.1063/1.1841479

[27]

Bosio A, Romeo N, Podestá A. Why CuInGaSe2 and CdTe polycrystalline thin film solar cells are more efficient than the corresponding single crystal[J]. Cryst Res Technol, 2005, 40: 1048. doi: 10.1002/(ISSN)1521-4079

[1]

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen. An InGaAs graded buffer layer in solar cells. J. Semicond., 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

[2]

Tang Yehua, Zhou Chunlan, Wang Wenjing, Zhou Su, Zhao Yan, Zhao Lei, Li Hailing, Yan Baojun, Chen Jingwei, Fei Jianming, Cao Hongbin. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process. J. Semicond., 2012, 33(6): 064007. doi: 10.1088/1674-4926/33/6/064007

[3]

Shuwei Zhang, Xiangbo Zeng. Influence of band gap of p-type hydrogenated nanocrystalline silicon layer on the short-circuit current density in thin-film silicon solar cells. J. Semicond., 2017, 38(11): 114007. doi: 10.1088/1674-4926/38/11/114007

[4]

Kewei Cao, Tong Liu, Jingming Liu, Hui Xie, Dongyan Tao, Youwen Zhao, Zhiyuan Dong, Feng Hui. Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell. J. Semicond., 2016, 37(6): 063002. doi: 10.1088/1674-4926/37/6/063002

[5]

Priyal Jain, P. Arun. Photovoltaic performance of hybrid ITO/PEDOT: PSS/n-SnS/Al solar cell structure. J. Semicond., 2016, 37(7): 074002. doi: 10.1088/1674-4926/37/7/074002

[6]

Li Chen, Xinliang Chen, Yiming Liu, Ying Zhao, Xiaodan Zhang. Research on ZnO/Si heterojunction solar cells. J. Semicond., 2017, 38(5): 054005. doi: 10.1088/1674-4926/38/5/054005

[7]

Chen Xinliang, Xue Junming, Sun Jian, Zhao Ying, Geng Xinhua. Growth of Textured ZnO Thin Films and Their Front Electrodes for Application in Solar Cells. J. Semicond., 2007, 28(7): 1072.

[8]

Liu Junpeng, Qu Shengchun, Zeng Xiangbo, Xu Ying, Chen Yonghai, Wang Zhijie, Zhou Huiying, Wang Zhanguo. Hybrid Organic/Inorganic Bulk Heteroj unction Solar Cells. J. Semicond., 2007, 28(S1): 364.

[9]

A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001

[10]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[11]

Lou Chaogang, Yan Ting, Sun Qiang, Xu Jun, Zhang Xiaobing, Lei Wei. External Quantum Efficiency of Quantum Well Solar Cells. J. Semicond., 2008, 29(11): 2088.

[12]

Xing Zhao, Jia Rui, Ding Wuchang, Meng Yanlong, Jin Zhi, Liu Xinyu. Improving poor fill factors for solar cells via light-induced plating. J. Semicond., 2012, 33(9): 094008. doi: 10.1088/1674-4926/33/9/094008

[13]

Zhang Qunfang, Zhu Meifang, Liu Fengzhen, Zhou Yuqin. High-Efficiency n-nc-Si:H/p-c-Si Heterojunction Solar Cells. J. Semicond., 2007, 28(1): 96.

[14]

Muhammad Nawaz, Ashfaq Ahmad. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells. J. Semicond., 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001

[15]

Chen Yongsheng, Yang Shi'e, Wang Jianhua, Lu Jingxiao, Gao Xiaoyong, Gu Jinhua, Zheng Wen, Zhao Shangli. Deposition of p-Type Microcrystalline Silicon Film and Its Application in Microcrystalline Silicon Solar Cells. J. Semicond., 2008, 29(11): 2130.

[16]

He Weiyu, Sun Yun, Qiao Zaixiang, Ao Jianping, Wang Xinglei, Li Changjian. J-V Characteristics of Cu(In1-xGax)Se2 Thin Film Solar Cells. J. Semicond., 2007, 28(12): 1941.

[17]

Sun Fuhe, Zhang Xiaodan, Zhao Ying, Wang Shifeng, Han Xiaoyan, Li Guijun, Wei Changchun, Sun Jian, Hou Guofu, Zhang Dekun, Geng Xinhua, Xiong Shaozhen. Doped-Chamber Deposition of Intrinsic Microcrystalline Silicon Thin Films and Its Application in Solar Cells. J. Semicond., 2008, 29(5): 855.

[18]

E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, M. Mikolasek. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond., 2014, 35(5): 054001. doi: 10.1088/1674-4926/35/5/054001

[19]

Abou El-Maaty M. Aly, A. Nasr. The effect of multi-intermediate bands on the behavior of an InAs1-xNx/GaAs1-ySby quantum dot solar cell. J. Semicond., 2015, 36(4): 042001. doi: 10.1088/1674-4926/36/4/042001

[20]

Zhang Dongyan, Zheng Xinhe, Li Xuefei, Wu Yuanyuan, Wang Jianfeng, Yang Hui. Effects of growth temperature on high-quality In0.2Ga0.8N layers by plasma-assisted molecular beam epitaxy. J. Semicond., 2012, 33(10): 103001. doi: 10.1088/1674-4926/33/10/103001

Search

Advanced Search >>

GET CITATION

K Luo, Y L Sun, L Y Zhou, F Wang, F Wu. Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer[J]. J. Semicond., 2017, 38(8): 084006. doi: 10.1088/1674-4926/38/8/084006.

Export: BibTex EndNote

Article Metrics

Article views: 626 Times PDF downloads: 24 Times Cited by: 0 Times

History

Manuscript received: 31 December 2016 Manuscript revised: 14 February 2017 Online: Published: 01 August 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误