J. Semicond. > Volume 39 > Issue 1 > Article Number: 011002

Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application

Dingrun Wang , Yongfeng Mei and Gaoshan Huang ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes.

Key words: printed electrodesconductive inkmetal nanomaterialscarbonaceous materialscomposite nanomaterials

Abstract: Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes.

Key words: printed electrodesconductive inkmetal nanomaterialscarbonaceous materialscomposite nanomaterials



References:

[1]

Hermerschmidt F, Ignasi B C, Savva A, et al. High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines. Flex Print Electron, 2016, 1(3): 035004

[2]

Sekine C, Tsubata Y, Yamada T, et al. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci Technol Adv Mater, 2014, 15(3): 034203

[3]

Karakawa M, Tokuno T, Nogi M, et al. Silver nanowire networks as a transparent printable electrode for organic photovoltaic cells. Electrochemistry, 2017, 85(5): 245

[4]

Li K, Zhang Y, Zhen H, et al. Printed light-trapping nanorelief Cu electrodes for full-solution-processed flexible organic solar cells. Mater Res Express, 2016, 3(7): 074006

[5]

Griffith M J, Cooling N A, Vaughan B, et al. Combining printing, coating, and vacuum deposition on the roll-to-roll scale: a hybrid organic photovoltaics fabrication. IEEE J Sel Top Quant, 2016, 22(1): 112

[6]

Jain P, Arun P. Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure. J Semicond, 2016, 37(7): 074002

[7]

Zhang S, Cai L, Wang T, et al. Fully printed flexible carbon nanotube photodetectors. Appl Phys Lett, 2017, 110(12): 123105

[8]

Guo Q, Fang Y, Zhang M, et al. Wrinkled single-crystalline germanium nanomembranes for stretchable photodetectors. IEEE Trans Electron Devices, 2017, 64(5): 1985

[9]

Song E, Guo Q, Huang G, et al. Bendable photodetector on fibers wrapped with flexible ultrathin single crystalline silicon nanomembranes. ACS Appl Mater Inter, 2017, 9(14): 12171

[10]

Lou Z, Liang Z Z, Shen G Z. Photodetectors based on two dimensional materials. J Semicond, 2016, 37(9): 091001

[11]

Hyun W J, Secor E B, Rojas G A, et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv Mater, 2015, 27(44): 7058

[12]

Takeda Y, Yoshimura Y, Kobayashi Y, et al. Integrated circuits using fully solution-processed organic TFT devices with printed silver electrodes. Org Electron, 2013, 14(12): 3362

[13]

Cao C, Andrews J B, Franklin A D. Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing. Adv Electron Mater, 2017, 3(5): 1700057

[14]

Kelly A G, Hallam T, Backes C, et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356(6333): 69

[15]

Barr M C, Rowehl J A, Lunt R R, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater, 2011, 23(31): 3500

[16]

Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv Mater, 2017, 29(22): 1606206

[17]

Chien Y M, Lefevre F, Shih I, et al. A solution processed top emission OLED with transparent carbon nanotube electrodes. Nanotechnology, 2010, 21(13): 134020

[18]

Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515

[19]

Guo H, Lin N, Chen Y, et al. Copper nanowires as fully transparent conductive electrodes. Sci Rep, 2013, 3(7): 2323

[20]

Chen R, Das S R, Jeong C, et al. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv Funct Mater, 2013, 23(41): 5150

[21]

Song J, Zeng H. Transparent electrodes printed with nanocrystal inks for flexible smart devices. Angew Chem Int Ed, 2015, 54(34): 9760

[22]

Bade S G R, Li J, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano, 2016, 10(2): 1795

[23]

Bhanushali S, Ghosh P, Ganesh A, et al. 1D copper nanostructures: progress, challenges and opportunities. Small, 2015, 11(11): 1232

[24]

Magdassi S, Grouchko M, Kamyshny A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 2010, 3(9): 4626

[25]

Song J, Kulinich S A, Li J, et al. A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices. Angew Chem Int Ed, 2015, 54(2): 462

[26]

Luo L, Bozyigit D, Wood V, et al. High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics. Chem Mater, 2013, 25(24): 4901

[27]

Buonsanti R, Llordes A, Aloni S, et al. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett, 2011, 11(11): 4706

[28]

Gao J, Mu X, Li X, et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes. Nanotechnology, 2013, 24(43): 435201

[29]

Meng Y, Xu X, Li H, et al. Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70(2): 103

[30]

Secor E B, Prabhumirashi P L, Puntambekar K, et al. Inkjet printing of high conductivity, flexible graphene patterns. J Phys Chem Lett, 2013, 4(8): 1347

[31]

Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics. Adv Mater, 2014, 26(26): 4533

[32]

Loevenich W. PEDOT-properties and applications. Polym Sci Ser C+, 2014, 56(1): 135

[33]

Guo Y, Otley M T, Li M, et al. PEDOT:PSS "wires" printed on textile for wearable electronics. ACS Appl Mater Inter, 2016, 8(40): 26998

[34]

Heydarnezhad H R, Pourabbas B. Deposition of electrically conductive ceria/polypyrrole nanocomposite particles on flexible polyethylene naphthalate film via in situ photo-induced polymerization. J Mater Sci: Mater Electron, 2014, 25(2): 1017

[35]

Yue B, Wang C, Ding X, et al. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta, 2012, 68: 18

[36]

Zhao Y, Liu B, Pan L, et al. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energ Environ Sci, 2013, 6(10): 2856

[37]

Foroutani K, Pourabbas B, Sharif M, et al. Preparation of conductive flexible films by in situ deposition of polythiophene nanoparticles on polyethylene naphthalate. Mater Sci Semicond Proc, 2014, 18(2): 6

[38]

Tian Z, Zhang L, Fang Y. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv Mater, 2017, 29(13): 1604572

[39]

Pan S, Zhao Y, Huang G. Highly photocatalytic TiO2 interconnected porous powder fabricated by sponge-templated atomic layer deposition. Nanotechnology, 2015, 26(36): 364001

[40]

Jang S, Seo Y, Choi J. Sintering of inkjet printed copper nanoparticles for flexible electronic. Scripta Mater, 2010, 62(5): 258

[41]

Li Y, Wu Y, Ong B S. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc, 2005, 127(10): 3266

[42]

Wu Y, Li Y, Ong B S. A simple and efficient approach to a printable silver conductor for printed electronics. J Am Chem Soc, 2007, 129(7): 1862

[43]

Minari T, Kanehara Y, Liu C. Room-temperature printing of organic thin-film transistors with π-junction gold nanoparticles. Adv Funct Mater, 2014, 24(31): 4886

[44]

Zhang W, Chen P, Gao Q, et al. High-concentration preparation of silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method. Chem Mater, 2008, 20(5): 1699

[45]

Johan M R, Aznan N A K, Yee S T, et al. Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. J Nanomater, 2014(2014): 54

[46]

Li S J, Chen Y Y, Huang L J, et al. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg Chem, 2014, 53(9): 4440

[47]

Huo Z, Tsung C K, Huang W, et al. Sub-two nanometer single crystal Au nanowires. Nano Lett, 2008, 8(7): 2041

[48]

Chen Y, Ouyang Z, Gu M, et al. Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv Mater, 2013, 25(1): 80

[49]

Sun S, Zhang G, Zhong Y. Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes. Chem Commun, 2009, 45: 7048

[50]

El-Nour K M M A, Eftaiha A A, Al-Warthan A, et al. Synthesis and applications of silver nanoparticles. Arab J Chem, 2010, 3(3): 135

[51]

Gurav A S, Kodas T T, Wang L M, et al. Generation of nanometer-size fullerene particles via vapor condensation. Chem Phys Lett, 1994, 218(4): 304

[52]

Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem, 2006, 45(28): 4597

[53]

Mayer A B R, Grebner W, Wannemacher R. Preparation of silver-latex composites. J Phys Chem B, 2000, 104(31): 7278

[54]

Peng P, Hu A, Zhou Y. Laser sintering of silver nanoparticle thin films: microstructure and optical properties. Appl Phys A, 2012, 108(3): 685

[55]

Zhang Z, Zhang X, Xin Z, et al. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology, 2011, 22(42): 425601

[56]

Kamyshny A. Metal-based inkjet inks for printed electronics. Open Appl Phys J, 2011, 4(19): 19

[57]

Wang Z, Yi P, Peng L, et al. Continuous fabrication of highly conductive and transparent ag mesh electrodes for flexible electronics. IEEE Trans Nanotechnol, 2017, 4(16): 687

[58]

Zhang Z, Zhu W. Controllable fabrication of a flexible transparent metallic grid conductor based on the coffee ring effect. J Mater Chem C, 2014, 2(45): 9587

[59]

Hong S, Yeo J, Kim G, et al. Nonvacuum maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano, 2013, 7(6): 5024

[60]

Jung S, Lee S, Song M, et al. Extremely flexible transparent conducting electrodes for organic devices. Adv Energy Mater, 2014, 4(1): 1

[61]

Zhang Y, Zhu P, Li G, et al. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl Mater Inter, 2014, 6(1): 560

[62]

Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109(29): 13857

[63]

Xu L, Yang Y, Hu Z, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano, 2016, 10(3): 3823

[64]

Lee Y, Choi J, Lee K J, et al. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 2008, 41(19): 415604

[65]

Jeong S, Woo K, Kim D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater, 2008, 18(5): 679

[66]

Zain N M, Stapley A G F, Shama G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohyd Polym, 2014, 112: 195

[67]

Umer A, Naveed S, Ramzan N, et al. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria (Rio de Janeiro), 2014, 19(3): 197

[68]

Wu C, Sheng Y, Tsao H. Copper conductive lines on flexible substrates fabricated at room temperature. J Mater Chem C, 2016, 4(15): 3274

[69]

Athanassiou E K, Grass R N, Stark W J. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 2006, 6(17): 1668

[70]

Luechinger N A, Athanassiou E K, Stark W J. Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology, 2008, 19(44): 445201

[71]

Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-" silver core-" shell nanoparticles for inkjet printing. Nanotechnology, 2009, 19(19): 3057

[72]

Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J Mater Chem, 2009, 19(19): 3057

[73]

Tsuji M, Hikino S, Sano Y, et al. Preparation of Cu@Ag core-" shell nanoparticles using a two-step polyol process under bubbling of N2 gas. Chem Lett, 2009, 6(38): 518

[74]

Wu X, Shao S, Chen Z, et al. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Nanotechnology, 2017, 28(3): 35203

[75]

Wang X, Wang R, Shi L, et al. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes. Small, 2015, 11(36): 4737

[76]

Kim Y, Ryu T I, Ok K, et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv Funct Mater, 2015, 25(29): 4580

[77]

Angmo D, Andersen T R, Bentzen J J, et al. Roll-to-roll printed silver nanowire semitransparent electrodes for fully ambient solution-processed tandem polymer solar cells. Adv Funct Mater, 2015, 25(28): 4539

[78]

Jiu J, Araki T, Wang J, et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A, 2014, 2(18): 6326

[79]

Bergin S M, Chen Y, Rathmell A R, et al. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 2012, 4(6): 1996

[80]

Tokuno T, Nogi M, Karakawa M, et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res, 2011, 4(12): 1215

[81]

Wang Z, Liu J, Chen X, et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chemistry, 2004, 11(1): 160

[82]

Zou K, Zhang X H, Duan X F, et al. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J Cryst Growth, 2004, 273(1/2): 285

[83]

Riveros G, Green S, Cortes A, et al. Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology, 2006, 17(2): 561

[84]

Choi J, Sauer G, Nielsch K, et al. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater, 2003, 15(3): 776

[85]

Tsuji M, Matsumoto K, Jiang P, et al. Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids Surf A, 2008, 316(1): 266

[86]

Yang Y, Hu Y, Xiong X, et al. Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method. RSC Adv, 2013, 3(22): 8431

[87]

Sun Y G, Yin Y D, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem Mater, 2002, 14(11): 4736

[88]

Li Z, Gu A, Guan M, et al. Large-scale synthesis of silver nanowires and platinum nanotubes. Colloid Polym Sci, 2010, 288(10/11): 1185

[89]

Jiu J, Murai K, Kim D, et al. Preparation of Ag nanorods with high yield by polyol process. Mater Chem Phys, 2009, 114(1): 333

[90]

Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry, 2005, 11(2): 440

[91]

Chen D, Qiao X, Qiu X, et al. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J Colloid Interf Sci, 2010, 344(2): 286

[92]

Sun Y G, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2(2): 165

[93]

Korte K E, Skrabalak S E, Xia Y. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem, 2008, 18(4): 437

[94]

Sun Y G, Xia Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. 3.0.CO;2-K">Adv Mater, 2002, 14(11): 833

[95]

Wiley B, Sun Y G, Xia Y N. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir, 2005, 21(18): 8077

[96]

Shobin L R, Sastikumar D, Manivannan S. Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing. Sens Actuators A, 2014, 214: 74

[97]

Shobin L R, Manivannan S. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electron Mater Lett, 2014, 10(6): 1027

[98]

Lai X, Feng X, Zhang M, et al. Large-scale synthesis and surface plasmon resonance properties of angled silver/silver homojunction nanowires. J Nanopart Res, 2014, 16(3): 1

[99]

Liang X, Zhao T, Hu Y, et al. CuCl2 and stainless steel synergistically assisted synthesis of high-purity silver nanowires on a large scale. RSC Adv, 2014, 4(88): 47536

[100]

Li Z C, Shang T M, Zhou Q F, et al. Sodium chloride assisted synthesis of silver nanowires. Micro Nano Lett, 2011, 6(2): 90

[101]

Chen C, Wang L, Jiang G, et al. Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology, 2006, 17(15): 3933

[102]

Chen C, Wang L, Jiang G H, et al. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology, 2006, 17(2): 466

[103]

Chen C, Wang L, Yu H, et al. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology, 2007, 18(11): 115612

[104]

Ma J, Zhan M. Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv, 2014, 4(40): 21060

[105]

Coskun S, Aksoy B, Unalan H E. Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des, 2011, 11(11): 4963

[106]

Li Y, Wang Y, Chen L, et al. Controlled synthesis on ag nanowires for conductive transparent electrodes. Mater Manuf Process, 2015, 30(1): 30

[107]

Lin J, Hsueh Y, Huang J. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. J Solid State Chem, 2014, 214(214): 2

[108]

Xue J, Song J, Dong Y, et al. Nanowire-based transparent conductors for flexible electronics and optoelectronics. Sci Bull, 2017, 62(2): 143

[109]

Lee J H, Lee P, Lee D, et al. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst Growth Des, 2012, 12(11): 5598

[110]

Moon H, Won P, Lee J, et al. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel. Nanotechnology, 2016, 27(27): 295201

[111]

Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater, 2015, 27(32): 4744

[112]

Yeo J, Kim G, Hong S. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth. Small, 2014, 10(24): 5015

[113]

Lee H, Hong S, Lee J. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl Mater Inter, 2016, 8(24): 15449

[114]

Hong S, Yeo J, Lee J, et al. Selective laser direct patterning of silver nanowire percolation network transparent conductor for capacitive touch panel. J Nanosci Nanotechnol, 2015, 15(3): 2317

[115]

Oh M, Jin W, Jeong H J, et al. Silver nanowire transparent conductive electrodes for high-efficiency III-nitride light-emitting diodes. Sci Rep, 2015, 5: 13483

[116]

Kim K K, Hong S, Cho H M, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett, 2015, 15(8): 5240

[117]

Binh N V, Daeho L. Copper nanowires and their applications for flexible, transparent conducting films: a review. Nanomaterials, 2016, 6(3): 47

[118]

Zhang D, Wang R, Wen M. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc, 2012, 134(35): 14283

[119]

Kumar D V R, K W, J M. Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale, 2015, 7(41): 17195

[120]

Ah C S, Do Hong S, Jang D J. Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B, 2001, 105(33): 7871

[121]

Stewart I E, Ye S, Chen Z, et al. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt core-shell nanowires and their use in transparent conducting films. Chem Mater, 2015, 27(22): 7788

[122]

Xue J, Song J, Zou Y, et al. Nickel concentration-dependent opto-electrical performances and stability of Cu@CuNi nanowire transparent conductors. RSC Adv, 2016, 6(94): 91394

[123]

Kholmanov I N, Domingues S H, Chou H. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano, 2013, 7(2): 1811

[124]

Won Y, Kim A, Lee D. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater, 2014, 6(6): 105

[125]

Niu Z, Cui F, Yu Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J Am Chem Soc, 2017, 139(21): 7348

[126]

Han S, Hong S, Yeo J, et al. Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv Mater, 2015, 27(41): 6396

[127]

Song J, Li J, Xu J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett, 2014, 14(11): 6298

[128]

Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater, 2014, 26(33): 5808

[129]

Zhang Y, Su L, Manuzzi D. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron, 2012, 31(1): 426

[130]

Stewart I E, Rathmell A R, Yan L, et al. Solution-processed copper-" nickel nanowire anodes for organic solar cells. Nanoscale, 2014, 6(11): 5980

[131]

Feng H, Yang Y, You Y. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem Commun, 2009, 15(15): 1984

[132]

Lyons P E, De S, Elias J, et al. High-performance transparent conductors from networks of gold nanowires. J Phys Chem Lett, 2011, 2(24): 3058

[133]

Dawson K, Strutwolf J, Rodgers K P. Single nanoskived nanowires for electrochemical applications. Analytical Chemistry, 2011, 83(14): 5535

[134]

Gonzalez-Garcia L, Maurer J H M, Reiser B, et al. Ultrathin gold nanowires for transparent electronics: breaking barriers. Procedia Eng, 2016, 141: 152

[135]

Bao C, Zhu W, Yang J, et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl Mater Inter, 2016, 8(36): 23868

[136]

Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5(2): 3132

[137]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666

[138]

Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312

[139]

Wang Y, Xu X, Lu J, et al. Toward high throughput interconvertible graphane-to-graphene growth and patterning. ACS Nano, 2010, 4(10): 6146

[140]

Xu X, Zhang Z, Qiu L, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat Nanotechnol, 2016, 11(11): 930

[141]

Zhu Y, Ji H, Cheng H M, et al. Mass production and industrial applications of graphene materials. National Science Review, 2017

[142]

Yang W, Wang C. Graphene and the related conductive inks for flexible electronics. J Mater Chem C, 2016, 4(30): 7193

[143]

Secor E B, Ahn B Y, Gao T Z, et al. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv Mater, 2015, 27(42): 6683

[144]

Du J, Pei S, Ma L, et al. Carbon nanotube- and graphene- based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26(13): 1958

[145]

Torrisi F, Hasan T, Wu W, et al. Inkjet-printed graphene electronics. ACS Nano, 2012, 6(4): 2992

[146]

Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater, 2015, 27(1): 109

[147]

Finn D J, Lotya M, Cunningham G, et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J Mater Chem C, 2014, 2(5): 925

[148]

Hyun W J, Secor E B, Rojas G A, et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv Mater, 2015, 27(44): 7058

[149]

Casaluci S, Gemmi M, Pellegrini V, et al. Graphene-based large area dye-sensitized solar cell modules. Nanoscale, 2016, 8(9): 5368

[150]

He D, Shen L, Zhang X, et al. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J, 2014, 60(8): 2757

[151]

Kong D, Le L T, Li Y, et al. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 2012, 28(37): 13467

[152]

Wei D, Li H, Han D, et al. Properties of graphene inks stabilized by different functional groups. Nanotechnology, 2011, 22(24): 1

[153]

Georgakilas V, Demeslis A, Ntararas E, et al. Hydrophilic nanotube supported graphene-water dispersible carbon superstructure with excellent conductivity. Adv Funct Mater, 2015, 25(10): 1481

[154]

Yadav S, Kaur I. Low temperature processed graphene thin film transparent electrodes for supercapacitor applications. RSC Adv, 2016, 6(82): 78702

[155]

Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105

[156]

Yu W J, Lee S Y, Chae S H, et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett, 2011, 11(3): 1344

[157]

Lee S K, Kim B J, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11(11): 4642

[158]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574

[159]

IIJIMA S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56

[160]

Hu L, Hecht D S, Gruener G. Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev, 2010, 110(10): 5790

[161]

Jia X, Wei F. Advances in production and applications of carbon nanotubes. Topics in Current Chemistry, 2017, 375(1): 18

[162]

Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5(5): 1727

[163]

Li Y, Kim W, Zhang Y, et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B, 2001, 105(46): 11424

[164]

Qian W, Liu T, Wei F, et al. Carbon nanotubes with large cores produced by adding sodium carbonate to the catalyst. Carbon, 2003, 41(13): 2683

[165]

Lv R, Kang F, Wang W. Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes. Carbon, 2007, 45(7): 1433

[166]

Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol, 2006, 1(1): 60

[167]

Liu H, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall nanotubes by simple gel chromatography. Nat Commun, 2011, 2(1): 309

[168]

Bahr J L, Mickelson E T, Bronikowski M J, et al. Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem Commun, 2001(2): 193

[169]

Cheng Q, Debnath S, O'Neill L, et al. Systematic study of the dispersion of SWNTs in organic solvents. J Phys Chem C, 2010, 114(11): 4857

[170]

Wang J, Sun J, Gao L, et al. Removal of the residual surfactants in transparent and conductive single-walled carbon nanotube films. J Phys Chem C, 2009, 113(41): 17685

[171]

Park C, Ounaies Z, Watson K A, et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett, 2002, 364(3/4): 303

[172]

Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett, 2002, 2(1): 25

[173]

Star A, Joshi V, Han T R, et al. Electronic detection of the enzymatic degradation of starch. Org Lett, 2004, 6(13): 2089

[174]

Hecht D S, Ramirez R J A, Briman M, et al. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett, 2006, 6(9): 2031

[175]

Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2(5): 338

[176]

Chen X, Qiu M, Ding H, et al. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 2016, 8(10): 5696

[177]

Li H, Zheng N, Liang N, et al. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes. Chemosphere, 2016, 154: 258

[178]

Qiu X, Ke F, Timsina R, et al. Attractive interactions between DNA-carbon nanotube hybrids in monovalent salts. J Phys Chem C, 2016, 120(25): 13831

[179]

Meng Y, Xu X, Li H, et al. Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70: 103

[180]

Wan Q, Tian J, Liu M, et al. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization. Appl Surf Sci, 2015, 346: 335

[181]

Cui H, Du L, Guo P, et al. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources, 2015, 283: 46

[182]

Wan Q, Liu M, Tian J, et al. Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP. Polym Chem-UK, 2015, 6(10): 1786

[183]

Huang W J, Lin Y, Taylor S, et al. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett, 2002, 2(3): 231

[184]

Hecht D, Hu L, Gruner G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett, 2006, 89(13): 425

[185]

Kaempgen M, Lebert M, Haluska M, et al. Sonochemical optimization of the conductivity of single wall carbon nanotube networks. Adv Mater, 2008, 20(3): 616

[186]

Hu L, Hecht D S, Gruner G. Infrared transparent carbon nanotube thin films. Appl Phys Lett, 2009, 94(8): 1273

[187]

Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622

[188]

Hamon M A, Sorci G A, Sugar M A, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95

[189]

Geng H, Kim K K, So K P, et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc, 2007, 129(25): 7758

[190]

Skakalova V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J Phys Chem B, 2005, 109(15): 7174

[191]

Yang S B, Kong B, Geng J, et al. Enhanced electrical conductivities of transparent double-walled carbon nanotube network films by post-treatment. J Phys Chem C, 2009, 113(31): 13658

[192]

Han J T, Kim J S, Jo S B, et al. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices. Nanoscale, 2012, 4(24): 7735

[193]

Fuhrer M S, Nygard J, Shih L, et al. Crossed nanotube junctions. Science, 2000, 288(5465): 494

[194]

Barrau S, Demont P, Peigney A, et al. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules, 2003, 36(14): 5187

[195]

Mallakpour S, Soltanian S. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv, 2016, 6(111): 109916

[196]

Zhou Y, Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater, 2016, 17(1): 493

[197]

Li S D, Yu Z, Rutherglen C, et al. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett, 2004, 4(10): 2003

[198]

Kane C L, Mele E J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett, 1997, 78(10): 1932

[199]

Wang Y, Yang H, Geng H, et al. Fabrication and evaluation of adhesion enhanced flexible carbon nanotube transparent conducting films. J Mater Chem C, 2015, 3(15): 3796

[200]

Pei T, Xu H, Zhang Z, et al. Electronic transport in single-walled carbon nanotube/graphene junction. Appl Phys Lett, 2011, 99(11): 787

[201]

Sarker B K, Kang N, Khondaker S I. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Nanoscale, 2014, 6(9): 4896

[202]

Shin D H, Shim H C, Song J, et al. Conductivity of films made from single-walled carbon nanotubes in terms of bundle diameter. Scripta Mater, 2009, 60(8): 607

[203]

Geng H, Kim K K, Lee K, et al. Dependence of material quality on performance of flexible transparent conducting films with single-walled carbon nanotubes. Nano, 2007, 2(3): 157

[204]

Kim D, Zhu L, Jeong D, et al. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon, 2013, 63: 530

[205]

Chae S H, Yu W J, Bae J J, et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater, 2013, 12(5): 403

[206]

Wu X, Liu J, Wu D, et al. Highly conductive and uniform graphene oxide modified PEDOT:PSS electrodes for ITO-Free organic light emitting diodes. J Mater Chem C, 2014, 2(20): 4044

[207]

Rowell M W, Topinka M A, McGehee M D, et al. Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett, 2006, 88(23): 233506

[208]

Hecht D S, Thomas D, Hu L, et al. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J Soc Inf Display, 2009, 17(11): 941

[209]

Cao Q, Hur S H, Zhu Z T, et al. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 2006, 18(3): 304

[210]

Hu L, Li J, Liu J, et al. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology, 2010, 21(15): 155202

[211]

Schindler A, Schau P, Fruehauf N. Active-matrix and flexible liquid-crystal displays with carbon-nanotube pixel electrodes. J Soc Inf Display, 2009, 17(10): 853

[212]

Degraff J, Liang R, Le M Q, et al. Printable low-cost and flexible carbon nanotube buckypaper motion sensors. Mater Design, 2017, 133: 47

[213]

Guan W J, Li Y, Chen Y Q, et al. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens Bioelectron, 2005, 21(3): 508

[214]

Pandit B, Dhakate S R, Singh B P, et al. Free-standing flexible MWCNTs bucky paper: Extremely stable and energy efficient supercapacitive electrode. Electrochim Acta, 2017, 249: 395

[215]

Nasibulin A G, Pikhitsa P V, Jiang H, et al. A novel hybrid carbon material. Nat Nanotechnol, 2007, 2(3): 156

[216]

Moisala A, Nasibulin A G, Shandakov S D. On-line detection of single-walled carbon nanotube formation during aerosol synthesis method. Carbon, 2005, 43: 2047

[217]

Nasibulin A G, Moisala A, Brown D P, et al. A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett, 2005, 402: 227

[218]

Reddy B P N, Gupta B, Gacche R N. An arsenal for 21st century noxious diseases: carbon nanomaterials. Int J Nanotechnol Appl, 2009, 3(2): 61

[219]

Graff R A, Swanson J P, Barone P W, et al. Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Adv Mater, 2005, 17(15): 1820

[220]

Wu X, Zeng X C. First-principles study of a carbon nanobud. ACS Nano, 2008, 2(7): 1459

[221]

He H Y, Pan B C. Electronic structures and Raman features of a carbon nanobud. J Phys Chem C, 2013, 113(49): 20822

[222]

Zhu X, Su H. Magnetism in hybrid carbon nanostructures: Nanobuds. Phys Rev B, 2009, 22(16): 70

[223]

Ahangari M G, Ganji M D, Montazar F. Mechanical and electronic properties of carbon nanobuds: first-principles study. Solid State Commun, 2015, 203: 58

[224]

Zhao P, Wang P J, Zhang Z, et al. First-principles study of the electronic transport properties of the carbon nanobuds. Phys B, 2010, 405(8): 2097

[225]

Anisimov A S, Brown D P, Mikladal B F, et al. Printed touch sensors using carbon NanoBud® material. Sid Symposium Digest of Technical Papers, 2015, 45(1): 200

[226]

Kaskela A, Nasibulin A G, Timmermans M Y. Aerosol synthesized SWCNT networks with tuneable conductivity and transparency by dry transfer technique. Nano Lett, 2010, 10(11): 4349

[227]

Gonzalez D, Nasibulin A G, Baklanov A M. A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Tech, 2005, 39(11): 1064

[228]

Lee M, Kim J, Park J, et al. Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Res Lett, 2015, 10(1): 27

[229]

Kholmanov I N, Magnuson C W, Aliev A E, et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett, 2012, 12(11): 5679

[230]

Ye T, Jun L, Kun L, et al. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Org Electron, 2017, 41: 179

[231]

Hu D, Zhu W, Peng Y, et al. Flexible carbon nanotube-enriched silver electrode films with high electrical conductivity and reliability prepared by facile screen printing. J Mater Sci Technol, 2017, 33: 1113

[232]

Morgenstern F S F, Kabra D, Massip S, et al. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Appl Phys Lett, 2011, 99(18): 242

[233]

Kang H, Jung S, Jeong S, et al. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun, 2015, 6: 6503

[234]

Won Y, Kim A, Lee D, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaic. NPG Asia Mater, 2014, 6(6): e105

[235]

Moon I K, Kim J I, Lee H, et al. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci Rep, 2013, 3(1): 1112

[236]

Lee H J, Hwang J H, Choi K B, et al. Effective indium-doped zinc oxide buffer layer on silver nanowires for electrically highly stable, flexible, transparent, and conductive composite electrodes. ACS Appl Mater Inter, 2013, 5(21): 10397

[237]

Liu Z, Parvez K, Li R, et al. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv Mater, 2015, 27(4): 669

[238]

Lee J, Lee P, Lee H B, et al. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Funct Mater, 2013, 23(34): 4171

[239]

Gaynor W, Burkhard G F, McGehee M D, et al. Smooth nanowire/polymer composite transparent electrodes. Adv Mater, 2011, 23(26): 2905

[240]

Khan Y, Ostfeld A E, Lochner C M, et al. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28(22): 4373

[241]

Kulkarni G U, Kiruthika S, Gupta R, et al. Towards low cost materials and methods for transparent electrodes. Curr Opin Chem Eng, 2015, 8: 60

[1]

Hermerschmidt F, Ignasi B C, Savva A, et al. High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines. Flex Print Electron, 2016, 1(3): 035004

[2]

Sekine C, Tsubata Y, Yamada T, et al. Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci Technol Adv Mater, 2014, 15(3): 034203

[3]

Karakawa M, Tokuno T, Nogi M, et al. Silver nanowire networks as a transparent printable electrode for organic photovoltaic cells. Electrochemistry, 2017, 85(5): 245

[4]

Li K, Zhang Y, Zhen H, et al. Printed light-trapping nanorelief Cu electrodes for full-solution-processed flexible organic solar cells. Mater Res Express, 2016, 3(7): 074006

[5]

Griffith M J, Cooling N A, Vaughan B, et al. Combining printing, coating, and vacuum deposition on the roll-to-roll scale: a hybrid organic photovoltaics fabrication. IEEE J Sel Top Quant, 2016, 22(1): 112

[6]

Jain P, Arun P. Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure. J Semicond, 2016, 37(7): 074002

[7]

Zhang S, Cai L, Wang T, et al. Fully printed flexible carbon nanotube photodetectors. Appl Phys Lett, 2017, 110(12): 123105

[8]

Guo Q, Fang Y, Zhang M, et al. Wrinkled single-crystalline germanium nanomembranes for stretchable photodetectors. IEEE Trans Electron Devices, 2017, 64(5): 1985

[9]

Song E, Guo Q, Huang G, et al. Bendable photodetector on fibers wrapped with flexible ultrathin single crystalline silicon nanomembranes. ACS Appl Mater Inter, 2017, 9(14): 12171

[10]

Lou Z, Liang Z Z, Shen G Z. Photodetectors based on two dimensional materials. J Semicond, 2016, 37(9): 091001

[11]

Hyun W J, Secor E B, Rojas G A, et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv Mater, 2015, 27(44): 7058

[12]

Takeda Y, Yoshimura Y, Kobayashi Y, et al. Integrated circuits using fully solution-processed organic TFT devices with printed silver electrodes. Org Electron, 2013, 14(12): 3362

[13]

Cao C, Andrews J B, Franklin A D. Completely printed, flexible, stable, and hysteresis-free carbon nanotube thin-film transistors via aerosol jet printing. Adv Electron Mater, 2017, 3(5): 1700057

[14]

Kelly A G, Hallam T, Backes C, et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science, 2017, 356(6333): 69

[15]

Barr M C, Rowehl J A, Lunt R R, et al. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv Mater, 2011, 23(31): 3500

[16]

Han D, Khan Y, Ting J, et al. Flexible blade-coated multicolor polymer light-emitting diodes for optoelectronic sensors. Adv Mater, 2017, 29(22): 1606206

[17]

Chien Y M, Lefevre F, Shih I, et al. A solution processed top emission OLED with transparent carbon nanotube electrodes. Nanotechnology, 2010, 21(13): 134020

[18]

Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515

[19]

Guo H, Lin N, Chen Y, et al. Copper nanowires as fully transparent conductive electrodes. Sci Rep, 2013, 3(7): 2323

[20]

Chen R, Das S R, Jeong C, et al. Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv Funct Mater, 2013, 23(41): 5150

[21]

Song J, Zeng H. Transparent electrodes printed with nanocrystal inks for flexible smart devices. Angew Chem Int Ed, 2015, 54(34): 9760

[22]

Bade S G R, Li J, Shan X, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano, 2016, 10(2): 1795

[23]

Bhanushali S, Ghosh P, Ganesh A, et al. 1D copper nanostructures: progress, challenges and opportunities. Small, 2015, 11(11): 1232

[24]

Magdassi S, Grouchko M, Kamyshny A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials, 2010, 3(9): 4626

[25]

Song J, Kulinich S A, Li J, et al. A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices. Angew Chem Int Ed, 2015, 54(2): 462

[26]

Luo L, Bozyigit D, Wood V, et al. High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics. Chem Mater, 2013, 25(24): 4901

[27]

Buonsanti R, Llordes A, Aloni S, et al. Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett, 2011, 11(11): 4706

[28]

Gao J, Mu X, Li X, et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes. Nanotechnology, 2013, 24(43): 435201

[29]

Meng Y, Xu X, Li H, et al. Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70(2): 103

[30]

Secor E B, Prabhumirashi P L, Puntambekar K, et al. Inkjet printing of high conductivity, flexible graphene patterns. J Phys Chem Lett, 2013, 4(8): 1347

[31]

Secor E B, Lim S, Zhang H, et al. Gravure printing of graphene for large-area flexible electronics. Adv Mater, 2014, 26(26): 4533

[32]

Loevenich W. PEDOT-properties and applications. Polym Sci Ser C+, 2014, 56(1): 135

[33]

Guo Y, Otley M T, Li M, et al. PEDOT:PSS "wires" printed on textile for wearable electronics. ACS Appl Mater Inter, 2016, 8(40): 26998

[34]

Heydarnezhad H R, Pourabbas B. Deposition of electrically conductive ceria/polypyrrole nanocomposite particles on flexible polyethylene naphthalate film via in situ photo-induced polymerization. J Mater Sci: Mater Electron, 2014, 25(2): 1017

[35]

Yue B, Wang C, Ding X, et al. Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta, 2012, 68: 18

[36]

Zhao Y, Liu B, Pan L, et al. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energ Environ Sci, 2013, 6(10): 2856

[37]

Foroutani K, Pourabbas B, Sharif M, et al. Preparation of conductive flexible films by in situ deposition of polythiophene nanoparticles on polyethylene naphthalate. Mater Sci Semicond Proc, 2014, 18(2): 6

[38]

Tian Z, Zhang L, Fang Y. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv Mater, 2017, 29(13): 1604572

[39]

Pan S, Zhao Y, Huang G. Highly photocatalytic TiO2 interconnected porous powder fabricated by sponge-templated atomic layer deposition. Nanotechnology, 2015, 26(36): 364001

[40]

Jang S, Seo Y, Choi J. Sintering of inkjet printed copper nanoparticles for flexible electronic. Scripta Mater, 2010, 62(5): 258

[41]

Li Y, Wu Y, Ong B S. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc, 2005, 127(10): 3266

[42]

Wu Y, Li Y, Ong B S. A simple and efficient approach to a printable silver conductor for printed electronics. J Am Chem Soc, 2007, 129(7): 1862

[43]

Minari T, Kanehara Y, Liu C. Room-temperature printing of organic thin-film transistors with π-junction gold nanoparticles. Adv Funct Mater, 2014, 24(31): 4886

[44]

Zhang W, Chen P, Gao Q, et al. High-concentration preparation of silver nanowires: restraining in situ nitric acidic etching by steel-assisted polyol method. Chem Mater, 2008, 20(5): 1699

[45]

Johan M R, Aznan N A K, Yee S T, et al. Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. J Nanomater, 2014(2014): 54

[46]

Li S J, Chen Y Y, Huang L J, et al. Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks. Inorg Chem, 2014, 53(9): 4440

[47]

Huo Z, Tsung C K, Huang W, et al. Sub-two nanometer single crystal Au nanowires. Nano Lett, 2008, 8(7): 2041

[48]

Chen Y, Ouyang Z, Gu M, et al. Mechanically strong, optically transparent, giant metal superlattice nanomembranes from ultrathin gold nanowires. Adv Mater, 2013, 25(1): 80

[49]

Sun S, Zhang G, Zhong Y. Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes. Chem Commun, 2009, 45: 7048

[50]

El-Nour K M M A, Eftaiha A A, Al-Warthan A, et al. Synthesis and applications of silver nanoparticles. Arab J Chem, 2010, 3(3): 135

[51]

Gurav A S, Kodas T T, Wang L M, et al. Generation of nanometer-size fullerene particles via vapor condensation. Chem Phys Lett, 1994, 218(4): 304

[52]

Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem, 2006, 45(28): 4597

[53]

Mayer A B R, Grebner W, Wannemacher R. Preparation of silver-latex composites. J Phys Chem B, 2000, 104(31): 7278

[54]

Peng P, Hu A, Zhou Y. Laser sintering of silver nanoparticle thin films: microstructure and optical properties. Appl Phys A, 2012, 108(3): 685

[55]

Zhang Z, Zhang X, Xin Z, et al. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology, 2011, 22(42): 425601

[56]

Kamyshny A. Metal-based inkjet inks for printed electronics. Open Appl Phys J, 2011, 4(19): 19

[57]

Wang Z, Yi P, Peng L, et al. Continuous fabrication of highly conductive and transparent ag mesh electrodes for flexible electronics. IEEE Trans Nanotechnol, 2017, 4(16): 687

[58]

Zhang Z, Zhu W. Controllable fabrication of a flexible transparent metallic grid conductor based on the coffee ring effect. J Mater Chem C, 2014, 2(45): 9587

[59]

Hong S, Yeo J, Kim G, et al. Nonvacuum maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano, 2013, 7(6): 5024

[60]

Jung S, Lee S, Song M, et al. Extremely flexible transparent conducting electrodes for organic devices. Adv Energy Mater, 2014, 4(1): 1

[61]

Zhang Y, Zhu P, Li G, et al. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl Mater Inter, 2014, 6(1): 560

[62]

Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109(29): 13857

[63]

Xu L, Yang Y, Hu Z, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano, 2016, 10(3): 3823

[64]

Lee Y, Choi J, Lee K J, et al. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 2008, 41(19): 415604

[65]

Jeong S, Woo K, Kim D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater, 2008, 18(5): 679

[66]

Zain N M, Stapley A G F, Shama G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohyd Polym, 2014, 112: 195

[67]

Umer A, Naveed S, Ramzan N, et al. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria (Rio de Janeiro), 2014, 19(3): 197

[68]

Wu C, Sheng Y, Tsao H. Copper conductive lines on flexible substrates fabricated at room temperature. J Mater Chem C, 2016, 4(15): 3274

[69]

Athanassiou E K, Grass R N, Stark W J. Large-scale production of carbon-coated copper nanoparticles for sensor applications. Nanotechnology, 2006, 6(17): 1668

[70]

Luechinger N A, Athanassiou E K, Stark W J. Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology, 2008, 19(44): 445201

[71]

Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-" silver core-" shell nanoparticles for inkjet printing. Nanotechnology, 2009, 19(19): 3057

[72]

Grouchko M, Kamyshny A, Magdassi S. Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J Mater Chem, 2009, 19(19): 3057

[73]

Tsuji M, Hikino S, Sano Y, et al. Preparation of Cu@Ag core-" shell nanoparticles using a two-step polyol process under bubbling of N2 gas. Chem Lett, 2009, 6(38): 518

[74]

Wu X, Shao S, Chen Z, et al. Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Nanotechnology, 2017, 28(3): 35203

[75]

Wang X, Wang R, Shi L, et al. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes. Small, 2015, 11(36): 4737

[76]

Kim Y, Ryu T I, Ok K, et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv Funct Mater, 2015, 25(29): 4580

[77]

Angmo D, Andersen T R, Bentzen J J, et al. Roll-to-roll printed silver nanowire semitransparent electrodes for fully ambient solution-processed tandem polymer solar cells. Adv Funct Mater, 2015, 25(28): 4539

[78]

Jiu J, Araki T, Wang J, et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J Mater Chem A, 2014, 2(18): 6326

[79]

Bergin S M, Chen Y, Rathmell A R, et al. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 2012, 4(6): 1996

[80]

Tokuno T, Nogi M, Karakawa M, et al. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res, 2011, 4(12): 1215

[81]

Wang Z, Liu J, Chen X, et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chemistry, 2004, 11(1): 160

[82]

Zou K, Zhang X H, Duan X F, et al. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. J Cryst Growth, 2004, 273(1/2): 285

[83]

Riveros G, Green S, Cortes A, et al. Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology, 2006, 17(2): 561

[84]

Choi J, Sauer G, Nielsch K, et al. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater, 2003, 15(3): 776

[85]

Tsuji M, Matsumoto K, Jiang P, et al. Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids Surf A, 2008, 316(1): 266

[86]

Yang Y, Hu Y, Xiong X, et al. Impact of microwave power on the preparation of silver nanowires via a microwave-assisted method. RSC Adv, 2013, 3(22): 8431

[87]

Sun Y G, Yin Y D, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem Mater, 2002, 14(11): 4736

[88]

Li Z, Gu A, Guan M, et al. Large-scale synthesis of silver nanowires and platinum nanotubes. Colloid Polym Sci, 2010, 288(10/11): 1185

[89]

Jiu J, Murai K, Kim D, et al. Preparation of Ag nanorods with high yield by polyol process. Mater Chem Phys, 2009, 114(1): 333

[90]

Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry, 2005, 11(2): 440

[91]

Chen D, Qiao X, Qiu X, et al. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J Colloid Interf Sci, 2010, 344(2): 286

[92]

Sun Y G, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2(2): 165

[93]

Korte K E, Skrabalak S E, Xia Y. Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem, 2008, 18(4): 437

[94]

Sun Y G, Xia Y N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. 3.0.CO;2-K">Adv Mater, 2002, 14(11): 833

[95]

Wiley B, Sun Y G, Xia Y N. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir, 2005, 21(18): 8077

[96]

Shobin L R, Sastikumar D, Manivannan S. Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing. Sens Actuators A, 2014, 214: 74

[97]

Shobin L R, Manivannan S. One pot rapid synthesis of silver nanowires using NaCl assisted glycerol mediated polyol process. Electron Mater Lett, 2014, 10(6): 1027

[98]

Lai X, Feng X, Zhang M, et al. Large-scale synthesis and surface plasmon resonance properties of angled silver/silver homojunction nanowires. J Nanopart Res, 2014, 16(3): 1

[99]

Liang X, Zhao T, Hu Y, et al. CuCl2 and stainless steel synergistically assisted synthesis of high-purity silver nanowires on a large scale. RSC Adv, 2014, 4(88): 47536

[100]

Li Z C, Shang T M, Zhou Q F, et al. Sodium chloride assisted synthesis of silver nanowires. Micro Nano Lett, 2011, 6(2): 90

[101]

Chen C, Wang L, Jiang G, et al. Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology, 2006, 17(15): 3933

[102]

Chen C, Wang L, Jiang G H, et al. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology, 2006, 17(2): 466

[103]

Chen C, Wang L, Yu H, et al. Morphology-controlled synthesis of silver nanostructures via a seed catalysis process. Nanotechnology, 2007, 18(11): 115612

[104]

Ma J, Zhan M. Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv, 2014, 4(40): 21060

[105]

Coskun S, Aksoy B, Unalan H E. Polyol synthesis of silver nanowires: an extensive parametric study. Cryst Growth Des, 2011, 11(11): 4963

[106]

Li Y, Wang Y, Chen L, et al. Controlled synthesis on ag nanowires for conductive transparent electrodes. Mater Manuf Process, 2015, 30(1): 30

[107]

Lin J, Hsueh Y, Huang J. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. J Solid State Chem, 2014, 214(214): 2

[108]

Xue J, Song J, Dong Y, et al. Nanowire-based transparent conductors for flexible electronics and optoelectronics. Sci Bull, 2017, 62(2): 143

[109]

Lee J H, Lee P, Lee D, et al. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst Growth Des, 2012, 12(11): 5598

[110]

Moon H, Won P, Lee J, et al. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel. Nanotechnology, 2016, 27(27): 295201

[111]

Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater, 2015, 27(32): 4744

[112]

Yeo J, Kim G, Hong S. Single nanowire resistive nano-heater for highly localized thermo-chemical reactions: localized hierarchical heterojunction nanowire growth. Small, 2014, 10(24): 5015

[113]

Lee H, Hong S, Lee J. Highly stretchable and transparent supercapacitor by Ag-Au core-shell nanowire network with high electrochemical stability. ACS Appl Mater Inter, 2016, 8(24): 15449

[114]

Hong S, Yeo J, Lee J, et al. Selective laser direct patterning of silver nanowire percolation network transparent conductor for capacitive touch panel. J Nanosci Nanotechnol, 2015, 15(3): 2317

[115]

Oh M, Jin W, Jeong H J, et al. Silver nanowire transparent conductive electrodes for high-efficiency III-nitride light-emitting diodes. Sci Rep, 2015, 5: 13483

[116]

Kim K K, Hong S, Cho H M, et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett, 2015, 15(8): 5240

[117]

Binh N V, Daeho L. Copper nanowires and their applications for flexible, transparent conducting films: a review. Nanomaterials, 2016, 6(3): 47

[118]

Zhang D, Wang R, Wen M. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J Am Chem Soc, 2012, 134(35): 14283

[119]

Kumar D V R, K W, J M. Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications. Nanoscale, 2015, 7(41): 17195

[120]

Ah C S, Do Hong S, Jang D J. Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B, 2001, 105(33): 7871

[121]

Stewart I E, Ye S, Chen Z, et al. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt core-shell nanowires and their use in transparent conducting films. Chem Mater, 2015, 27(22): 7788

[122]

Xue J, Song J, Zou Y, et al. Nickel concentration-dependent opto-electrical performances and stability of Cu@CuNi nanowire transparent conductors. RSC Adv, 2016, 6(94): 91394

[123]

Kholmanov I N, Domingues S H, Chou H. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano, 2013, 7(2): 1811

[124]

Won Y, Kim A, Lee D. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater, 2014, 6(6): 105

[125]

Niu Z, Cui F, Yu Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J Am Chem Soc, 2017, 139(21): 7348

[126]

Han S, Hong S, Yeo J, et al. Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv Mater, 2015, 27(41): 6396

[127]

Song J, Li J, Xu J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett, 2014, 14(11): 6298

[128]

Han S, Hong S, Ham J, et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv Mater, 2014, 26(33): 5808

[129]

Zhang Y, Su L, Manuzzi D. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron, 2012, 31(1): 426

[130]

Stewart I E, Rathmell A R, Yan L, et al. Solution-processed copper-" nickel nanowire anodes for organic solar cells. Nanoscale, 2014, 6(11): 5980

[131]

Feng H, Yang Y, You Y. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced Raman scattering. Chem Commun, 2009, 15(15): 1984

[132]

Lyons P E, De S, Elias J, et al. High-performance transparent conductors from networks of gold nanowires. J Phys Chem Lett, 2011, 2(24): 3058

[133]

Dawson K, Strutwolf J, Rodgers K P. Single nanoskived nanowires for electrochemical applications. Analytical Chemistry, 2011, 83(14): 5535

[134]

Gonzalez-Garcia L, Maurer J H M, Reiser B, et al. Ultrathin gold nanowires for transparent electronics: breaking barriers. Procedia Eng, 2016, 141: 152

[135]

Bao C, Zhu W, Yang J, et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Appl Mater Inter, 2016, 8(36): 23868

[136]

Gong S, Schwalb W, Wang Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun, 2014, 5(2): 3132

[137]

Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666

[138]

Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312

[139]

Wang Y, Xu X, Lu J, et al. Toward high throughput interconvertible graphane-to-graphene growth and patterning. ACS Nano, 2010, 4(10): 6146

[140]

Xu X, Zhang Z, Qiu L, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat Nanotechnol, 2016, 11(11): 930

[141]

Zhu Y, Ji H, Cheng H M, et al. Mass production and industrial applications of graphene materials. National Science Review, 2017

[142]

Yang W, Wang C. Graphene and the related conductive inks for flexible electronics. J Mater Chem C, 2016, 4(30): 7193

[143]

Secor E B, Ahn B Y, Gao T Z, et al. Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv Mater, 2015, 27(42): 6683

[144]

Du J, Pei S, Ma L, et al. Carbon nanotube- and graphene- based transparent conductive films for optoelectronic devices. Adv Mater, 2014, 26(13): 1958

[145]

Torrisi F, Hasan T, Wu W, et al. Inkjet-printed graphene electronics. ACS Nano, 2012, 6(4): 2992

[146]

Hyun W J, Secor E B, Hersam M C, et al. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater, 2015, 27(1): 109

[147]

Finn D J, Lotya M, Cunningham G, et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications. J Mater Chem C, 2014, 2(5): 925

[148]

Hyun W J, Secor E B, Rojas G A, et al. All-printed, foldable organic thin-film transistors on glassine paper. Adv Mater, 2015, 27(44): 7058

[149]

Casaluci S, Gemmi M, Pellegrini V, et al. Graphene-based large area dye-sensitized solar cell modules. Nanoscale, 2016, 8(9): 5368

[150]

He D, Shen L, Zhang X, et al. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE J, 2014, 60(8): 2757

[151]

Kong D, Le L T, Li Y, et al. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 2012, 28(37): 13467

[152]

Wei D, Li H, Han D, et al. Properties of graphene inks stabilized by different functional groups. Nanotechnology, 2011, 22(24): 1

[153]

Georgakilas V, Demeslis A, Ntararas E, et al. Hydrophilic nanotube supported graphene-water dispersible carbon superstructure with excellent conductivity. Adv Funct Mater, 2015, 25(10): 1481

[154]

Yadav S, Kaur I. Low temperature processed graphene thin film transparent electrodes for supercapacitor applications. RSC Adv, 2016, 6(82): 78702

[155]

Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics, 2012, 6(2): 105

[156]

Yu W J, Lee S Y, Chae S H, et al. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett, 2011, 11(3): 1344

[157]

Lee S K, Kim B J, Jang H, et al. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett, 2011, 11(11): 4642

[158]

Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5(8): 574

[159]

IIJIMA S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56

[160]

Hu L, Hecht D S, Gruener G. Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev, 2010, 110(10): 5790

[161]

Jia X, Wei F. Advances in production and applications of carbon nanotubes. Topics in Current Chemistry, 2017, 375(1): 18

[162]

Park S, Vosguerichian M, Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5(5): 1727

[163]

Li Y, Kim W, Zhang Y, et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J Phys Chem B, 2001, 105(46): 11424

[164]

Qian W, Liu T, Wei F, et al. Carbon nanotubes with large cores produced by adding sodium carbonate to the catalyst. Carbon, 2003, 41(13): 2683

[165]

Lv R, Kang F, Wang W. Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes. Carbon, 2007, 45(7): 1433

[166]

Arnold M S, Green A A, Hulvat J F, et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol, 2006, 1(1): 60

[167]

Liu H, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall nanotubes by simple gel chromatography. Nat Commun, 2011, 2(1): 309

[168]

Bahr J L, Mickelson E T, Bronikowski M J, et al. Dissolution of small diameter single-wall carbon nanotubes in organic solvents. Chem Commun, 2001(2): 193

[169]

Cheng Q, Debnath S, O'Neill L, et al. Systematic study of the dispersion of SWNTs in organic solvents. J Phys Chem C, 2010, 114(11): 4857

[170]

Wang J, Sun J, Gao L, et al. Removal of the residual surfactants in transparent and conductive single-walled carbon nanotube films. J Phys Chem C, 2009, 113(41): 17685

[171]

Park C, Ounaies Z, Watson K A, et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett, 2002, 364(3/4): 303

[172]

Bandyopadhyaya R, Nativ-Roth E, Regev O, et al. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett, 2002, 2(1): 25

[173]

Star A, Joshi V, Han T R, et al. Electronic detection of the enzymatic degradation of starch. Org Lett, 2004, 6(13): 2089

[174]

Hecht D S, Ramirez R J A, Briman M, et al. Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Lett, 2006, 6(9): 2031

[175]

Zheng M, Jagota A, Semke E D, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater, 2003, 2(5): 338

[176]

Chen X, Qiu M, Ding H, et al. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale, 2016, 8(10): 5696

[177]

Li H, Zheng N, Liang N, et al. Adsorption mechanism of different organic chemicals on fluorinated carbon nanotubes. Chemosphere, 2016, 154: 258

[178]

Qiu X, Ke F, Timsina R, et al. Attractive interactions between DNA-carbon nanotube hybrids in monovalent salts. J Phys Chem C, 2016, 120(25): 13831

[179]

Meng Y, Xu X, Li H, et al. Optimisation of carbon nanotube ink for large-area transparent conducting films fabricated by controllable rod-coating method. Carbon, 2014, 70: 103

[180]

Wan Q, Tian J, Liu M, et al. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization. Appl Surf Sci, 2015, 346: 335

[181]

Cui H, Du L, Guo P, et al. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources, 2015, 283: 46

[182]

Wan Q, Liu M, Tian J, et al. Surface modification of carbon nanotubes by combination of mussel inspired chemistry and SET-LRP. Polym Chem-UK, 2015, 6(10): 1786

[183]

Huang W J, Lin Y, Taylor S, et al. Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Lett, 2002, 2(3): 231

[184]

Hecht D, Hu L, Gruner G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl Phys Lett, 2006, 89(13): 425

[185]

Kaempgen M, Lebert M, Haluska M, et al. Sonochemical optimization of the conductivity of single wall carbon nanotube networks. Adv Mater, 2008, 20(3): 616

[186]

Hu L, Hecht D S, Gruner G. Infrared transparent carbon nanotube thin films. Appl Phys Lett, 2009, 94(8): 1273

[187]

Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287(5453): 622

[188]

Hamon M A, Sorci G A, Sugar M A, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95

[189]

Geng H, Kim K K, So K P, et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc, 2007, 129(25): 7758

[190]

Skakalova V, Kaiser A B, Dettlaff-Weglikowska U, et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J Phys Chem B, 2005, 109(15): 7174

[191]

Yang S B, Kong B, Geng J, et al. Enhanced electrical conductivities of transparent double-walled carbon nanotube network films by post-treatment. J Phys Chem C, 2009, 113(31): 13658

[192]

Han J T, Kim J S, Jo S B, et al. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices. Nanoscale, 2012, 4(24): 7735

[193]

Fuhrer M S, Nygard J, Shih L, et al. Crossed nanotube junctions. Science, 2000, 288(5465): 494

[194]

Barrau S, Demont P, Peigney A, et al. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules, 2003, 36(14): 5187

[195]

Mallakpour S, Soltanian S. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv, 2016, 6(111): 109916

[196]

Zhou Y, Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater, 2016, 17(1): 493

[197]

Li S D, Yu Z, Rutherglen C, et al. Electrical properties of 0.4 cm long single-walled carbon nanotubes. Nano Lett, 2004, 4(10): 2003

[198]

Kane C L, Mele E J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys Rev Lett, 1997, 78(10): 1932

[199]

Wang Y, Yang H, Geng H, et al. Fabrication and evaluation of adhesion enhanced flexible carbon nanotube transparent conducting films. J Mater Chem C, 2015, 3(15): 3796

[200]

Pei T, Xu H, Zhang Z, et al. Electronic transport in single-walled carbon nanotube/graphene junction. Appl Phys Lett, 2011, 99(11): 787

[201]

Sarker B K, Kang N, Khondaker S I. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Nanoscale, 2014, 6(9): 4896

[202]

Shin D H, Shim H C, Song J, et al. Conductivity of films made from single-walled carbon nanotubes in terms of bundle diameter. Scripta Mater, 2009, 60(8): 607

[203]

Geng H, Kim K K, Lee K, et al. Dependence of material quality on performance of flexible transparent conducting films with single-walled carbon nanotubes. Nano, 2007, 2(3): 157

[204]

Kim D, Zhu L, Jeong D, et al. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon, 2013, 63: 530

[205]

Chae S H, Yu W J, Bae J J, et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater, 2013, 12(5): 403

[206]

Wu X, Liu J, Wu D, et al. Highly conductive and uniform graphene oxide modified PEDOT:PSS electrodes for ITO-Free organic light emitting diodes. J Mater Chem C, 2014, 2(20): 4044

[207]

Rowell M W, Topinka M A, McGehee M D, et al. Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett, 2006, 88(23): 233506

[208]

Hecht D S, Thomas D, Hu L, et al. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J Soc Inf Display, 2009, 17(11): 941

[209]

Cao Q, Hur S H, Zhu Z T, et al. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater, 2006, 18(3): 304

[210]

Hu L, Li J, Liu J, et al. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology, 2010, 21(15): 155202

[211]

Schindler A, Schau P, Fruehauf N. Active-matrix and flexible liquid-crystal displays with carbon-nanotube pixel electrodes. J Soc Inf Display, 2009, 17(10): 853

[212]

Degraff J, Liang R, Le M Q, et al. Printable low-cost and flexible carbon nanotube buckypaper motion sensors. Mater Design, 2017, 133: 47

[213]

Guan W J, Li Y, Chen Y Q, et al. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens Bioelectron, 2005, 21(3): 508

[214]

Pandit B, Dhakate S R, Singh B P, et al. Free-standing flexible MWCNTs bucky paper: Extremely stable and energy efficient supercapacitive electrode. Electrochim Acta, 2017, 249: 395

[215]

Nasibulin A G, Pikhitsa P V, Jiang H, et al. A novel hybrid carbon material. Nat Nanotechnol, 2007, 2(3): 156

[216]

Moisala A, Nasibulin A G, Shandakov S D. On-line detection of single-walled carbon nanotube formation during aerosol synthesis method. Carbon, 2005, 43: 2047

[217]

Nasibulin A G, Moisala A, Brown D P, et al. A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett, 2005, 402: 227

[218]

Reddy B P N, Gupta B, Gacche R N. An arsenal for 21st century noxious diseases: carbon nanomaterials. Int J Nanotechnol Appl, 2009, 3(2): 61

[219]

Graff R A, Swanson J P, Barone P W, et al. Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Adv Mater, 2005, 17(15): 1820

[220]

Wu X, Zeng X C. First-principles study of a carbon nanobud. ACS Nano, 2008, 2(7): 1459

[221]

He H Y, Pan B C. Electronic structures and Raman features of a carbon nanobud. J Phys Chem C, 2013, 113(49): 20822

[222]

Zhu X, Su H. Magnetism in hybrid carbon nanostructures: Nanobuds. Phys Rev B, 2009, 22(16): 70

[223]

Ahangari M G, Ganji M D, Montazar F. Mechanical and electronic properties of carbon nanobuds: first-principles study. Solid State Commun, 2015, 203: 58

[224]

Zhao P, Wang P J, Zhang Z, et al. First-principles study of the electronic transport properties of the carbon nanobuds. Phys B, 2010, 405(8): 2097

[225]

Anisimov A S, Brown D P, Mikladal B F, et al. Printed touch sensors using carbon NanoBud® material. Sid Symposium Digest of Technical Papers, 2015, 45(1): 200

[226]

Kaskela A, Nasibulin A G, Timmermans M Y. Aerosol synthesized SWCNT networks with tuneable conductivity and transparency by dry transfer technique. Nano Lett, 2010, 10(11): 4349

[227]

Gonzalez D, Nasibulin A G, Baklanov A M. A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Tech, 2005, 39(11): 1064

[228]

Lee M, Kim J, Park J, et al. Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Res Lett, 2015, 10(1): 27

[229]

Kholmanov I N, Magnuson C W, Aliev A E, et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett, 2012, 12(11): 5679

[230]

Ye T, Jun L, Kun L, et al. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Org Electron, 2017, 41: 179

[231]

Hu D, Zhu W, Peng Y, et al. Flexible carbon nanotube-enriched silver electrode films with high electrical conductivity and reliability prepared by facile screen printing. J Mater Sci Technol, 2017, 33: 1113

[232]

Morgenstern F S F, Kabra D, Massip S, et al. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Appl Phys Lett, 2011, 99(18): 242

[233]

Kang H, Jung S, Jeong S, et al. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun, 2015, 6: 6503

[234]

Won Y, Kim A, Lee D, et al. Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaic. NPG Asia Mater, 2014, 6(6): e105

[235]

Moon I K, Kim J I, Lee H, et al. 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci Rep, 2013, 3(1): 1112

[236]

Lee H J, Hwang J H, Choi K B, et al. Effective indium-doped zinc oxide buffer layer on silver nanowires for electrically highly stable, flexible, transparent, and conductive composite electrodes. ACS Appl Mater Inter, 2013, 5(21): 10397

[237]

Liu Z, Parvez K, Li R, et al. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv Mater, 2015, 27(4): 669

[238]

Lee J, Lee P, Lee H B, et al. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Funct Mater, 2013, 23(34): 4171

[239]

Gaynor W, Burkhard G F, McGehee M D, et al. Smooth nanowire/polymer composite transparent electrodes. Adv Mater, 2011, 23(26): 2905

[240]

Khan Y, Ostfeld A E, Lochner C M, et al. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater, 2016, 28(22): 4373

[241]

Kulkarni G U, Kiruthika S, Gupta R, et al. Towards low cost materials and methods for transparent electrodes. Curr Opin Chem Eng, 2015, 8: 60

[1]

Hongyu Zhen, Kan Li, Yaokang Zhang, Lina Chen, Liyong Niu, Xiaoling Wei, Xu Fang, Peng You, Zhike Liu, Dongrui Wang, Feng Yan, Zijian Zheng. Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells. J. Semicond., 2018, 39(1): 014002. doi: 10.1088/1674-4926/39/1/014002

[2]

A. A. Azab, Azza A. Ward, G. M. Mahmoud, Eman M. El-Hanafy, H. El-Zahed, F. S. Terra. Structural and dielectric properties of prepared PbS and PbTe nanomaterials. J. Semicond., 2018, 39(12): 123006. doi: 10.1088/1674-4926/39/12/123006

[3]

Jianming Lei, Xiaomei Chen. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes. J. Semicond., 2015, 36(8): 083006. doi: 10.1088/1674-4926/36/8/083006

[4]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[5]

Chen Bin, Yang Yintang, Chai Changchun, Wang Ning, Ma Zhenyang, Xie Xuanrong. Optical coupling optimization in a novel metal-semiconductor-metal ultraviolet photodetector based on semicircular Schottky electrodes. J. Semicond., 2012, 33(5): 054010. doi: 10.1088/1674-4926/33/5/054010

[6]

Muhammad Tariq Saeed Chani, Sher Bahadar Khan, Kh. S. Karimov, M. Abid, Abdullah M. Asiri, Kalsoom Akhtar. Synthesis of metal oxide composite nanosheets and their pressure sensing properties. J. Semicond., 2015, 36(2): 023002. doi: 10.1088/1674-4926/36/2/023002

[7]

Sujie Chen, Siying Li, Sai Peng, Yukun Huang, Jiaqing Zhao, Wei Tang, Xiaojun Guo. Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array. J. Semicond., 2018, 39(1): 013001. doi: 10.1088/1674-4926/39/1/013001

[8]

Chen Bin, Yang Yintang, Chai Changchun, Song Kun, Ma Zhenyang. Two-dimensional numerical computation of the structure-dependent spectral response in a 4H-SiC metal–semiconductor–metal ultraviolet photodetector with consideration of reflection and absorption on contact electrodes. J. Semicond., 2011, 32(8): 084001. doi: 10.1088/1674-4926/32/8/084001

[9]

Wei Yuan, Xinzhou Wu, Weibing Gu, Jian Lin, Zheng Cui. Printed stretchable circuit on soft elastic substrate for wearable application. J. Semicond., 2018, 39(1): 015002. doi: 10.1088/1674-4926/39/1/015002

[10]

Xian Huang. Materials and applications of bioresorbable electronics. J. Semicond., 2018, 39(1): 011003. doi: 10.1088/1674-4926/39/1/011003

[11]

Tao Cheng, Youwei Wu, Xiaoqin Shen, Wenyong Lai, Wei Huang. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond., 2018, 39(1): 015001. doi: 10.1088/1674-4926/39/1/015001

[12]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

[13]

Zhou Maoxiu, Zhao Qiang, Zhang Wei, Liu Qi, Dai Yuehua. The conductive path in HfO2: first principles study. J. Semicond., 2012, 33(7): 072002. doi: 10.1088/1674-4926/33/7/072002

[14]

Cheng Wei, Jin Zhi, Yu Jinyong, Liu Xinyu. Design of InGaAsP Composite Collector for InP DHBT. J. Semicond., 2007, 28(6): 943.

[15]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[16]

Zhang Manhong, Huo Zongliang, Wang Qin, Liu Ming. Material properties and effective work function of reactive sputtered TaN gate electrodes. J. Semicond., 2011, 32(5): 053005. doi: 10.1088/1674-4926/32/5/053005

[17]

Chen Xinliang, Xue Junming, Sun Jian, Zhao Ying, Geng Xinhua. Growth of Textured ZnO Thin Films and Their Front Electrodes for Application in Solar Cells. J. Semicond., 2007, 28(7): 1072.

[18]

Zubair Ahmad, Muhammad H. Sayyad, Kh. S. Karimov. CuPc based organic-inorganic hetero-junction with Au electrodes. J. Semicond., 2010, 31(7): 074002. doi: 10.1088/1674-4926/31/7/074002

[19]

Xiaofei Pu, Lei Wan, Hui Zhang, Yajie Qin, Zhiliang Hong. A low-power portable ECG sensor interface with dry electrodes. J. Semicond., 2013, 34(5): 055002. doi: 10.1088/1674-4926/34/5/055002

[20]

Li Yang, Meng Zhiguo, Wu Chunya, Xiong Shaozhen. Transflective Function of LCDs Using MIC Poly-Si Pixel Electrodes. J. Semicond., 2008, 29(6): 1172.

Search

Advanced Search >>

GET CITATION

D R Wang, Y F Mei, G S Huang, Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application[J]. J. Semicond., 2018, 39(1): 011002. doi: 10.1088/1674-4926/39/1/011002.

Export: BibTex EndNote

Article Metrics

Article views: 1806 Times PDF downloads: 85 Times Cited by: 0 Times

History

Manuscript received: 02 August 2017 Manuscript revised: 18 November 2017 Online: Accepted Manuscript: 27 December 2017 Published: 01 January 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误