J. Semicond. > Volume 39 > Issue 10 > Article Number: 104007

High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength

Hao Luo 1, 2, 3, , Cheng’ao Yang 1, 2, 3, , Shengwen Xie 1, 2, 3, , Xiaoli Chai 1, 2, 3, , Shushan Huang 1, 2, 3, , Yu Zhang 1, 2, 3, , , Yingqiang Xu 1, 2, and Zhichuan Niu 1, 2, 3,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The GaSb-based distributed Bragg reflection (DBR) diode laser with 23rd-order gratings have been fabricated by conventional UV lithography and inductively coupled plasma (ICP) etching. The ICP etching conditions were optimized and the relationship among etching depth, duty ratio and side-mode suppression ratio (SMSR) was studied. The device with a ridge width of 100 μm, gratings period of 13 μm and etching depth of 1.55 μm as well as the duty ratio of 85% was fabricated, its maximum SMSR reached 22.52 dB with uncoated cavity facets under single longitudinal operation mode at room temperature.

Key words: GaSb-baseddistributed Bragg reflectioninductively coupled plasmasingle longitudinal modehigh-order gratings

Abstract: The GaSb-based distributed Bragg reflection (DBR) diode laser with 23rd-order gratings have been fabricated by conventional UV lithography and inductively coupled plasma (ICP) etching. The ICP etching conditions were optimized and the relationship among etching depth, duty ratio and side-mode suppression ratio (SMSR) was studied. The device with a ridge width of 100 μm, gratings period of 13 μm and etching depth of 1.55 μm as well as the duty ratio of 85% was fabricated, its maximum SMSR reached 22.52 dB with uncoated cavity facets under single longitudinal operation mode at room temperature.

Key words: GaSb-baseddistributed Bragg reflectioninductively coupled plasmasingle longitudinal modehigh-order gratings



References:

[1]

Curcio J A, Drummeter L F, Petty C C, et al. An experimental study of atmospheric transmission. J Opt Soc Am, 1954, 43: 97

[2]

Wootten M B, Tan J, Chien Y J, et al. Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules. Semicond Sci Technol, 2014, 29(11): 115014

[3]

Kaplan L D. On the calculation of atmospheric transmission functions for the infrared. 2.0.CO;2">J Meteorol, 1952, 9: 139

[4]

Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μ region. Proc Royal Soc London Ser A, 1951, 206: 87

[5]

Meng Y X, Liu T G, Liu K, et al. A modified empirical mode decomposition algorithm in TDLAS for gas detection. IEEE Photonics J, 2014, 6: 9

[6]

Krzempek K, Jahjah M, Lewicki R, et al. CW DFT RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl Phys B, 2013, 112: 461

[7]

Li L, Wang Y, Li S. Application of infrared gas detection technology to safe production and transportation in natural gas industry. Nat Gas Ind, 2011, 31: 96

[8]

Kim H D, Kang S G, Le C H. A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser. IEEE Photonics Technol Lett, 2000, 12(8): 1067

[9]

Lu Q Y, Guo W H, Nawrocka M, et al. Single mode lasers based on slots suitable for photonic integration. Opt Express, 2011, 19(26): 140

[10]

Mueller M, Bauer A, Lehnhardt T, et al. High-power frequency stabilized GaSb DBR tapered laser. IEEE Photonics Technol Lett, 2008, 20(21-24): 2162

[11]

Viheriala J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography. IEEE Photonic Technol Lett, 2016, 28(11): 1233

[12]

Xu J, Zhang W, Liu L, et al. Phase-shift control in two-beam laser interference lithography. 2011. IEEE International Conference on Mechatronics and Automation, 2011: 144

[13]

Murata H, Rokuta E, Shimoyama H, et al. Computer simulation of high brightness and high beam current electron gun for high-thoroughput electrom beam lithography. 25th International Vacuum Nanoelectronics Conference, 2012: 1

[14]

Forouhar S, Briggs R M, Frez C, et al. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength. Appl Phys Lett, 2012, 100(3): 031107

[15]

Zhang Y, Wang G W, Tang B, et al. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers. J Semicond, 2011, 32(10): 103002

[16]

Fan Z F, Luo J S, Ye W H. Compressible Rayleigh–Taylor instability with preheat in inertial confinement fusion. Chin Phys Lett, 2007, 24(8): 2308

[17]

Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6 μm room-temperature laser diodes with InGaAsSb/AlGaAsSb type I quantum-wells. Infrared Millim Waves, 2017, 36(3): 278

[18]

Hosoda T, Kipshidze G, Shterengas L, et al. 200 mW type I GaSb-based laser diodes operating at 3 μm: Role of waveguide width. Appl Phys Lett, 2009, 94(26): 261104

[19]

Gupta J A, Ventrudo B F, Waldron P, et al. External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm. Electron Lett, 2010, 46(17): 1218

[20]

Swaminathan K, Janardhanan P E, Sulima O V. Inductively coupled plasma etching of III–V antimonides in BCl3/SiCl4 etching chemisrty. Thin Solid Film, 2008, 516: 8712

[21]

Kasunic K J. Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings. Lightwave Technol, 2000, 18(3): 425

[22]

Fricke J, Wenzel H, Matalla M, et al. 980-nm DBR lasers using higher order gratings defined by i-line lithography. Semicond Sci Technol, 2005, 20(11): 1149

[1]

Curcio J A, Drummeter L F, Petty C C, et al. An experimental study of atmospheric transmission. J Opt Soc Am, 1954, 43: 97

[2]

Wootten M B, Tan J, Chien Y J, et al. Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules. Semicond Sci Technol, 2014, 29(11): 115014

[3]

Kaplan L D. On the calculation of atmospheric transmission functions for the infrared. 2.0.CO;2">J Meteorol, 1952, 9: 139

[4]

Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μ region. Proc Royal Soc London Ser A, 1951, 206: 87

[5]

Meng Y X, Liu T G, Liu K, et al. A modified empirical mode decomposition algorithm in TDLAS for gas detection. IEEE Photonics J, 2014, 6: 9

[6]

Krzempek K, Jahjah M, Lewicki R, et al. CW DFT RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell. Appl Phys B, 2013, 112: 461

[7]

Li L, Wang Y, Li S. Application of infrared gas detection technology to safe production and transportation in natural gas industry. Nat Gas Ind, 2011, 31: 96

[8]

Kim H D, Kang S G, Le C H. A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser. IEEE Photonics Technol Lett, 2000, 12(8): 1067

[9]

Lu Q Y, Guo W H, Nawrocka M, et al. Single mode lasers based on slots suitable for photonic integration. Opt Express, 2011, 19(26): 140

[10]

Mueller M, Bauer A, Lehnhardt T, et al. High-power frequency stabilized GaSb DBR tapered laser. IEEE Photonics Technol Lett, 2008, 20(21-24): 2162

[11]

Viheriala J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography. IEEE Photonic Technol Lett, 2016, 28(11): 1233

[12]

Xu J, Zhang W, Liu L, et al. Phase-shift control in two-beam laser interference lithography. 2011. IEEE International Conference on Mechatronics and Automation, 2011: 144

[13]

Murata H, Rokuta E, Shimoyama H, et al. Computer simulation of high brightness and high beam current electron gun for high-thoroughput electrom beam lithography. 25th International Vacuum Nanoelectronics Conference, 2012: 1

[14]

Forouhar S, Briggs R M, Frez C, et al. High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2 μm wavelength. Appl Phys Lett, 2012, 100(3): 031107

[15]

Zhang Y, Wang G W, Tang B, et al. Molecular beam epitaxy growth of InGaSb/AlGaAsSb strained quantum well diode lasers. J Semicond, 2011, 32(10): 103002

[16]

Fan Z F, Luo J S, Ye W H. Compressible Rayleigh–Taylor instability with preheat in inertial confinement fusion. Chin Phys Lett, 2007, 24(8): 2308

[17]

Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6 μm room-temperature laser diodes with InGaAsSb/AlGaAsSb type I quantum-wells. Infrared Millim Waves, 2017, 36(3): 278

[18]

Hosoda T, Kipshidze G, Shterengas L, et al. 200 mW type I GaSb-based laser diodes operating at 3 μm: Role of waveguide width. Appl Phys Lett, 2009, 94(26): 261104

[19]

Gupta J A, Ventrudo B F, Waldron P, et al. External cavity tunable type-I diode laser with continuous-wave singlemode operation at 3.24 μm. Electron Lett, 2010, 46(17): 1218

[20]

Swaminathan K, Janardhanan P E, Sulima O V. Inductively coupled plasma etching of III–V antimonides in BCl3/SiCl4 etching chemisrty. Thin Solid Film, 2008, 516: 8712

[21]

Kasunic K J. Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings. Lightwave Technol, 2000, 18(3): 425

[22]

Fricke J, Wenzel H, Matalla M, et al. 980-nm DBR lasers using higher order gratings defined by i-line lithography. Semicond Sci Technol, 2005, 20(11): 1149

[1]

Cheng Jia, Ji Linhong, Zhu Yu, Shi Yixiang. Fluid model of inductively coupled plasma etcher based on COMSOL. J. Semicond., 2010, 31(3): 032004. doi: 10.1088/1674-4926/31/3/032004

[2]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[3]

Qiu Weibin, Wang Jiaxian . Highly controllable ICP etching of GaAs based materials for grating fabrication. J. Semicond., 2012, 33(2): 026001. doi: 10.1088/1674-4926/33/2/026001

[4]

Cheng Jia, Zhu Yu, Duan Guanghong, Wang Chunhong. Analysis of Processing Chamber Flow Field Characteristics for an ICP Etcher Based on Regression Orthogonal Design. J. Semicond., 2008, 29(4): 780.

[5]

Zhao Jianyi, Guo Jian, Huang Xiaodong, Zhou Ning, Liu Wen. Spatial control based quantum well intermixing in InP/InGaAsP structures using ICP. J. Semicond., 2012, 33(10): 106001. doi: 10.1088/1674-4926/33/10/106001

[6]

Ding Yan, Guo Weiling, Zhu Yanxu, Liu Ying, Liu Jianpeng, Yan Weiwei. Fabrication of high-voltage light emitting diodes with a deep isolation groove structure. J. Semicond., 2012, 33(9): 094007. doi: 10.1088/1674-4926/33/9/094007

[7]

Ma Long, Huang Yinglong, Zhang Yang, Wang Liangchen, Yang Fuhua, Zeng Yiping. Fabrication of an AlAs/In0.53Ga0.47As/InAs Resonant Tunneling Diode on InP Substrate for High-Speed Circuit Applications. J. Semicond., 2006, 27(6): 959.

[8]

Peng Feng, Yejin Zhang, Yufei Wang, Lei Liu, Siriguleng Zhang, Hailing Wang, Wanhua Zheng. A novel hybrid III—V/silicon deformed micro-disk single-mode laser. J. Semicond., 2015, 36(2): 024012. doi: 10.1088/1674-4926/36/2/024012

[9]

Cheng Jia, Zhu Yu, Wang Jinsong. Two-Dimensional Discharge Simulation of InductivelyCoupled Plasma Etcher. J. Semicond., 2007, 28(6): 989.

[10]

Zhang Xin, Zhang Tao, Chen Wei, Liu Yu, Wang Xin, Xie Liang, Zhu Ninghua, Feng Boxue. Injection Locked Erbium-Doped Fiber Ring Laser and Its Wavelength Tuning. J. Semicond., 2007, 28(2): 258.

[11]

Yu Xiaodong, Han Jun, Li Jianjun, Deng Jun, Lin Weizhi, Da Xiaoli, Chen Yixin, Shen Guangdi. High Brightness AlGaInP LED with Coupled Distributed Bragg Reflector. J. Semicond., 2007, 28(1): 100.

[12]

Liu Beiping, Li Xiaoliang, Zhu Haibo. Cl2-Based Dry Etching of GaN Using Inductively Coupled Plasma. J. Semicond., 2006, 27(7): 1335.

[13]

Ding Ruixue, Yang Yintang, Han Ru. Microtrenching effect of SiC ICP etching in SF6/O2 plasma. J. Semicond., 2009, 30(1): 016001. doi: 10.1088/1674-4926/30/1/016001

[14]

Peng Yinsheng, Ye Xiaoling, Xu Bo, Jin Peng, Niu Jiebin, Jia Rui, Wang Zhanguo. Optimization of inductively coupled plasma etching for low nanometer scale air-hole arrays in two-dimensional GaAs-based photonic crystals. J. Semicond., 2010, 31(1): 012003. doi: 10.1088/1674-4926/31/1/012003

[15]

Zhen Dong, Yihao Zhao, Qi Zhang, Cuiluan Wang, Wei Li, Suping Liu, Xiaoyu Ma. High power 980 nm broad area distributed feedback laser with first-order gratings. J. Semicond., 2016, 37(2): 024010. doi: 10.1088/1674-4926/37/2/024010

[16]

Li Di, Yang Yintang, Shi Lichun, Wu Xiaofeng. Design of a high-order single-loop Σ△ ADC followed by a decimator in 0.18 μm CMOS technology. J. Semicond., 2009, 30(10): 105007. doi: 10.1088/1674-4926/30/10/105007

[17]

Xilin Li, Ping Ma, Xiaoli Ji, Tongbo Wei, Xiaoyu Tan, Junxi Wang, Jinmin Li. Implementation of slow and smooth etching of GaN by inductively coupled plasma. J. Semicond., 2018, 39(11): 113002. doi: 10.1088/1674-4926/39/11/113002

[18]

Liu Yang, Sun Yu, Kong Duanhua, Wang Baojun, Bian Jing, An Xin, Zhao Lingjuan, Wang Wei. Frequency and wavelength tunable optical microwave source based on a distributed Bragg reflector self-pulsation laser. J. Semicond., 2010, 31(6): 064007. doi: 10.1088/1674-4926/31/6/064007

[19]

Liu Bin, Zhang Rong, Xie Zili, Ji Xiaoli, Li Liang, Zhou Jianjun, Jiang Ruolian, Han Ping, Zheng Youdou, Zheng Jianguo, Gong Haimei. AIGaN-Based Multi-Type Distributed Bragg Reflectors Grown by MOCVD. J. Semicond., 2007, 28(S1): 492.

[20]

Yi Zhu, Xingyou Chen, Yingjie Ma, Yonggang Zhang, Ben Du, Yanhui Shi, Yi Gu. Surface and optical properties of silicon nitride deposited by inductively coupled plasma-chemical vapor deposition. J. Semicond., 2018, 39(8): 083005. doi: 10.1088/1674-4926/39/8/083005

Search

Advanced Search >>

GET CITATION

H Luo, C Yang, S W Xie, X L Chai, S S Huang, Y Zhang, Y Q Xu, Z C Niu, High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength[J]. J. Semicond., 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007.

Export: BibTex EndNote

Article Metrics

Article views: 735 Times PDF downloads: 28 Times Cited by: 0 Times

History

Manuscript received: 06 February 2018 Manuscript revised: 04 April 2018 Online: Uncorrected proof: 05 July 2018 Published: 09 October 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误