J. Semicond. > Volume 39 > Issue 11 > Article Number: 114008

Memory characteristics of microcavity dielectric barrier discharge

Yanzhou Sun , Xiaoqian Liu , , Dati Su and Huibin Yang

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: The nonlinear resistance characteristics of microcavity dielectric barrier discharge are mainly studied in the paper. A simulation model of microcavity dielectric barrier discharge is herein built to study the relationship between voltage and current in the process of discharge, and thus its I–V characteristic curve can be obtained. The I–V characteristics of the memristor are analyzed and compared with the I–V characteristics of the dielectric barrier discharge; it can be found that the I–V characteristics of the microcavity dielectric barrier discharge are similar to the characteristics of the memristor by analyzing them. The memory characteristics of microcavity dielectric barrier discharge are further analyzed.

Key words: microcavity dielectric barrier dischargememristorI–V characteristicmemory characteristics

Abstract: The nonlinear resistance characteristics of microcavity dielectric barrier discharge are mainly studied in the paper. A simulation model of microcavity dielectric barrier discharge is herein built to study the relationship between voltage and current in the process of discharge, and thus its I–V characteristic curve can be obtained. The I–V characteristics of the memristor are analyzed and compared with the I–V characteristics of the dielectric barrier discharge; it can be found that the I–V characteristics of the microcavity dielectric barrier discharge are similar to the characteristics of the memristor by analyzing them. The memory characteristics of microcavity dielectric barrier discharge are further analyzed.

Key words: microcavity dielectric barrier dischargememristorI–V characteristicmemory characteristics



References:

[1]

Chua L O. Memristor—the missing circuit element. IEEE Trans Circuit Theory, 1971, 18(5): 507

[2]

Chua L O, Kang S M. Memristive devices and systems. Proc IEEE, 1976, 64(2): 209

[3]

Chua L O. Nonlinear circuit foundations for nanodevices. Part I. The four-element torus. Proc IEEE, 2003, 91(11): 1830

[4]

Wu J, Mccreery R L. Solid-state electrochemistry in molecule/TiO2 molecular heterojunction as the basis of the TiO2 "memristor". Electrochem Soc, 2009, 156(1): 29

[5]

Yang L X, Wang L C, Qi K J. Gas discharge lamp voltage current function. Journal of Zhengzhou Institute of Technology, 1995, 16(1): 79

[6]

Shinde S S, Dongle T D. Modelling of nanostructured TiO2-based memristors. J Semicond, 2015, 36(3): 034001

[7]

Liang Y, Yu D S, Chen H. A novel meminductor emulator based on analog circuits. Acta Phys Sin, 2013, 62(15): 158501

[8]

Ho P W C, Almurib H A F, Kumar T N. Memristive SRAM cell of seven transistors and one memristor. J Semicond, 2016, 37(10): 104002

[9]

Wang X Y, Andrew L F, Herbert H C I, et al. Implementation of an analogue model of a memristor based on a light-dependent resistor. Chin Phys B, 2012, 21(10): 108501

[10]

Wang X X. Dielectric barrier discharge and its applications. High Volt Eng, 2009, 35(1): 1

[11]

Sun Y Z, Sun N N, Gong Y M. Electrical characteristics of microcavity structure dielectric barrier dischargec. High Volt Eng, 2015, 41(12): 4008

[12]

Zhang C, Fang Z, Zhao L Z, et al. Simulation of dielectric barrier discharge using SIMULINK. High Volt Appar, 2007, 43(3): 218

[13]

Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453(7191): 80

[14]

Zhu Z M, Wang Y H. Device modeling and parameter analysis of passive electronic component of the memristor. Electron Compon Mater, 2014, 33(8): 62

[15]

Song W P, Ding S S, Ning S P. Memory resistor is based on Simulink model. Journal of Taiyuan University of Science and Technology, 2014, 35(01): 23

[16]

Liu D Q, Cheng H F, Zhu X, et al. Research progress of memristors and memristive mechanism. Acta Phys Sin, 2014, 63(18): 187301

[1]

Chua L O. Memristor—the missing circuit element. IEEE Trans Circuit Theory, 1971, 18(5): 507

[2]

Chua L O, Kang S M. Memristive devices and systems. Proc IEEE, 1976, 64(2): 209

[3]

Chua L O. Nonlinear circuit foundations for nanodevices. Part I. The four-element torus. Proc IEEE, 2003, 91(11): 1830

[4]

Wu J, Mccreery R L. Solid-state electrochemistry in molecule/TiO2 molecular heterojunction as the basis of the TiO2 "memristor". Electrochem Soc, 2009, 156(1): 29

[5]

Yang L X, Wang L C, Qi K J. Gas discharge lamp voltage current function. Journal of Zhengzhou Institute of Technology, 1995, 16(1): 79

[6]

Shinde S S, Dongle T D. Modelling of nanostructured TiO2-based memristors. J Semicond, 2015, 36(3): 034001

[7]

Liang Y, Yu D S, Chen H. A novel meminductor emulator based on analog circuits. Acta Phys Sin, 2013, 62(15): 158501

[8]

Ho P W C, Almurib H A F, Kumar T N. Memristive SRAM cell of seven transistors and one memristor. J Semicond, 2016, 37(10): 104002

[9]

Wang X Y, Andrew L F, Herbert H C I, et al. Implementation of an analogue model of a memristor based on a light-dependent resistor. Chin Phys B, 2012, 21(10): 108501

[10]

Wang X X. Dielectric barrier discharge and its applications. High Volt Eng, 2009, 35(1): 1

[11]

Sun Y Z, Sun N N, Gong Y M. Electrical characteristics of microcavity structure dielectric barrier dischargec. High Volt Eng, 2015, 41(12): 4008

[12]

Zhang C, Fang Z, Zhao L Z, et al. Simulation of dielectric barrier discharge using SIMULINK. High Volt Appar, 2007, 43(3): 218

[13]

Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453(7191): 80

[14]

Zhu Z M, Wang Y H. Device modeling and parameter analysis of passive electronic component of the memristor. Electron Compon Mater, 2014, 33(8): 62

[15]

Song W P, Ding S S, Ning S P. Memory resistor is based on Simulink model. Journal of Taiyuan University of Science and Technology, 2014, 35(01): 23

[16]

Liu D Q, Cheng H F, Zhu X, et al. Research progress of memristors and memristive mechanism. Acta Phys Sin, 2014, 63(18): 187301

[1]

Wei Wu, Ning Deng. Memristor interpretations based on constitutive relations. J. Semicond., 2017, 38(10): 104005. doi: 10.1088/1674-4926/38/10/104005

[2]

Patrick W. C. Ho, Haider Abbas F. Almurib, T. Nandha Kumar. Memristive SRAM cell of seven transistors and one memristor. J. Semicond., 2016, 37(10): 104002. doi: 10.1088/1674-4926/37/10/104002

[3]

Jeetendra Singh, Balwinder Raj. Comparative analysis of memristor models and memories design. J. Semicond., 2018, 39(7): 074006. doi: 10.1088/1674-4926/39/7/074006

[4]

Meilin He, Jingping Xu, Jianxiong Chen, Lu Liu. Improved memory performance of metal-oxide-nitride-oxide-silicon by annealing the SiO2 tunnel layer in different nitridation atmospheres. J. Semicond., 2013, 34(11): 114005. doi: 10.1088/1674-4926/34/11/114005

[5]

Wei Wu, Ning Deng. Electro-magnetic interpretation of four-element torus. J. Semicond., 2017, 38(11): 114008. doi: 10.1088/1674-4926/38/11/114008

[6]

Zhiqiang You, Fei Hu, Liming Huang, Peng Liu, Jishun Kuang, Shiying Li. A long lifetime, low error rate RRAM design with self-repair module. J. Semicond., 2016, 37(11): 115004. doi: 10.1088/1674-4926/37/11/115004

[7]

S. S. Shinde, T. D. Dongle. Modelling of nanostructured TiO2-based memristors. J. Semicond., 2015, 36(3): 034001. doi: 10.1088/1674-4926/36/3/034001

[8]

Miao Qinghai, Lu Shuojin, Zhang Xinghua, Zong Fujian, Zhu Yangjun. The Convergence Characteristic of the Forward I-V Characteristic Curves of a Semiconductor Silicon Barrier at Different Temperatures. J. Semicond., 2008, 29(4): 663.

[9]

Li Hairong, Li Siyuan. A novel method for measuring carrier lifetime and capture cross-section by using the negative resistance I–V characteristics of a barrier-type thyristor. J. Semicond., 2010, 31(8): 084005. doi: 10.1088/1674-4926/31/8/084005

[10]

Dongsheng Ma, Zuochang Ye, Yan Wang. Statistically modeling I-V characteristics of CNT-FET with LASSO. J. Semicond., 2017, 38(8): 084002. doi: 10.1088/1674-4926/38/8/084002

[11]

Wang Yongshun, Li Hairong, Wu Rong, Li Siyuan. Mechanism of Reverse Snapback on I-VCharacteristics of Power SITHs with Buried Gate Structure. J. Semicond., 2008, 29(3): 461.

[12]

Shadia. J. Ikhmayies, Riyad N Ahmad-Bitar. Using I-V characteristics to investigate selected contacts for SnO2:F thin films. J. Semicond., 2012, 33(8): 083001. doi: 10.1088/1674-4926/33/8/083001

[13]

Xu Jiayi, Shi Yanling, Ren Zheng, Hu Shaojian, Wan Xinggong, Ding Yanfang, Lai Zongsheng. A Macromodel and Parameter Optimization for the I-V Characteristics of High-Voltage MOSFETs. J. Semicond., 2008, 29(8): 1561.

[14]

Ruru Huo, Daolin Cai, Bomy Chen, Yifeng Chen, Yuchan Wang, Yueqing Wang, Hongyang Wei, Qing Wang, Yangyang Xia, Dan Gao, Zhitang Song. Endurance characteristics of phase change memory cells. J. Semicond., 2016, 37(5): 054009. doi: 10.1088/1674-4926/37/5/054009

[15]

Liu Fengzhen, Cui Jiedong, Zhang Qunfang, Zhu Meifang, Zhou Yuqin. Dark I-VCharacteristics and Carrier Transport Mechanism in Nano-Crystalline Silicon Thin Film/Crystalline Silicon Hetero-Junction Solar Cells. J. Semicond., 2008, 29(3): 549.

[16]

Guo Peng, Ji Xin, Dong Yuanwei, Lü Yinxiang, Xu Wei. Fabrication and Memory Characteristics of a New Organic Thin Film Device. J. Semicond., 2008, 29(1): 140.

[17]

Chen Haifeng, Ma Xiaohua, Hao Yue, Cao Yanrong, Huang Jianfang, Wang Wenbo, Li Kang. Characteristics of I sub,max Stress in 90nm-Technology nMOSFETs. J. Semicond., 2005, 26(12): 2411.

[18]

Ni Henan, Wu Liangcai, Song Zhitang, Hui Chun. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals. J. Semicond., 2009, 30(11): 114003. doi: 10.1088/1674-4926/30/11/114003

[19]

Lü Jin, Chen Yubin, Zuo Zheng, Shi Yi, Pu Lin, Zheng Youdou. Charge Storage Characteristics of Nonvolatile Floating-Gate Memory Based on Gradual Ge1-xSix/Si Heteronanocrystals. J. Semicond., 2008, 29(4): 770.

[20]

Taofei Zhou, Kanglin Xiong, Min Zhang, Lei Liu, Feifei Tian, Zhiqiang Zhang, Hong Gu, Jun Huang, Jianfeng Wang, Jianrong Dong, Ke Xu. Leakage of photocurrent: an alternative view on I-V curves of solar cells. J. Semicond., 2015, 36(6): 062002. doi: 10.1088/1674-4926/36/6/062002

Search

Advanced Search >>

GET CITATION

Y Z Sun, X Q Liu, D T Su, H B Yang, Memory characteristics of microcavity dielectric barrier discharge[J]. J. Semicond., 2018, 39(11): 114008. doi: 10.1088/1674-4926/39/11/114008.

Export: BibTex EndNote

Article Metrics

Article views: 1239 Times PDF downloads: 31 Times Cited by: 0 Times

History

Manuscript received: 16 January 2018 Manuscript revised: 27 April 2018 Online: Uncorrected proof: 04 July 2018 Published: 01 November 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误